Log in

Development of Solution Precursor Plasma Spray (SPPS) Yttrium Aluminum Garnet (YAG) Coatings for Engine Components Using a High Enthalpy Cascaded Arc Gun: Part I

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Solution precursor plasma-sprayed (SPPS) yttrium aluminum garnet (YAG) thermal barrier coatings (TBCs) have previously been shown to have higher temperature capability and reduced thermal conductivity compared to state-of-the- art TBCs. This previous work was conducted using a relatively low enthalpy plasma gun (Metco 9 MB) and TBCs were deposited on laboratory specimens. The primary goal of this work was to advance the state of technology readiness of SPPS YAG TBC coatings by using a high enthalpy cascaded arc gun (Sinplex Pro) to produce varied microstructures optimized for specific engine components: a fuel nozzle tip, an annular combustor liner, and turbine ceramic outer air seals. The microstructure and properties of these TBCs have been characterized and shown to be superior to those obtained previously. Based on these favorable results, the processing technology was transferred to solar turbines incorporated. Their process optimization of coatings for the three engine components and the rig and engine testing of the coated components will be described in Part II of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. N.P. Padture, M. Gell and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science (80-.), 2002, 296(5566), p 280-284. https://doi.org/10.1126/science.1068609

    Article  CAS  Google Scholar 

  2. M.J. Stiger, N.M. Yanar, M.G. Top**, F.S. Pettit and G.H. Meier, Thermal Barrier Coatings for the 21st Century, Zeitschrift fur Met., 1999, 90, p 1069-1078.

    CAS  Google Scholar 

  3. R.A. Miller, Thermal Barrier Coatings for Aircraft Engines: History and Directions, J. Therm. Spray Technol., 1995, 6(1), p 35-42.

    Article  Google Scholar 

  4. A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier and F.S. Pettit, Mechanisms Controlling the Durability of Thermal Barrier Coatings, Prog. Mater. Sci., 2001, 46(5), p 505-553. https://doi.org/10.1016/S0079-6425(00)00020-7

    Article  Google Scholar 

  5. D.R. Clarke, M. Oechsner and N.P. Padture, Thermal-Barrier Coatings for More Efficient Gas-Turbine Engines, MRS Bull., 2012, 37(10), p 891-898.

    Article  CAS  Google Scholar 

  6. J.H. Perepezko, The Hotter the Engine, the Better, Science (80-.), 2009, 326, p 1068-1069.

    Article  CAS  Google Scholar 

  7. C. Mercer, J.R. Williams, D.R. Clarke and A.G. Evans, On a Ferroelastic Mechanism Governing the Toughness of Metastable Tetragonal-Prime (T′) Yttria-Stabilized Zirconia, Proc. R. Soc. Lond. A Math. Phys. Eng. Sci., 2007, 463, p 1393-1408.

    CAS  Google Scholar 

  8. X.Q. Cao, R. Vassen and D. Stoever, Ceramic Materials for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2004, 24(1), p 1-10. https://doi.org/10.1016/S0955-2219(03)00129-8

    Article  CAS  Google Scholar 

  9. R.A. Miller, J.L. Smialek, R.G. Garlick, Phase Stability in Plasma Sprayed Partially Stabilized Zirconia-Yttria, in Advances in Ceramics. Volume 3, Science and Technology of Zirconia, 1981, p 242-253.

  10. R. Vassen, A. Stuke and D. Stöver, Recent Developments in the Field of Thermal Barrier Coatings, J. Therm. Spray Technol., 2009, 18(2), p 181-186. https://doi.org/10.1007/s11666-009-9312-7

    Article  CAS  Google Scholar 

  11. L. Li, N. Hitchman and J. Knapp, Failure of Thermal Barrier Coatings Subjected to CMAS Attack, J. Therm. Spray Technol., 2010, 19(1-2), p 148-155. https://doi.org/10.1007/s11666-009-9356-8

    Article  CAS  Google Scholar 

  12. M.P. Borom, C.A. Johnson and L.A. Peluso, Role of Environment Deposits and Operating Surface Temperature in Spallation of Air Plasma Sprayed Thermal Barrier Coatings, Surf. Coatings Technol., 1996, 86, p 116-126.

    Article  Google Scholar 

  13. D.R. Clarke and S.R. Phillpot, Thermal Barrier Coating Materials, Mater. Today, 2005, 8(6), p 22-29. https://doi.org/10.1016/S1369-7021(05)70934-2

    Article  CAS  Google Scholar 

  14. C.G. Levi, Emerging Materials and Processes for Thermal Barrier Systems, Curr. Opin. Solid State Mater. Sci., 2004, 8(1), p 77-91.

    Article  CAS  Google Scholar 

  15. D. Stöver, G. Pracht, H. Lehmann, M. Dietrich, J.-E. Döring and R. Vaßen, New Material Concepts for the Next Generation of Plasma-Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 2004, 13(1), p 76-83. https://doi.org/10.1361/10599630418176

    Article  CAS  Google Scholar 

  16. S. Ghosh, Thermal Barrier Ceramic Coatings—A Review, in Advanced Ceramic Processing, 2015, p 75-100, https://doi.org/10.5772/61346.

  17. R.L. Jones, R.F. Reidy and D. Mess, Scandia, Yttria-Stabilized Zirconia for Thermal Barrier Coatings, Surf. Coatings Technol., 1996, 82(1-2), p 70-76.

    Article  CAS  Google Scholar 

  18. D.-J. Kim, Effect of Ta2O5, Nb2O5, and HfO2 Alloying on the Transformability of Y2O3-Stabilized Tetragonal ZrO2, J. Am. Ceram. Soc., 1990, 73(1), p 115-120.

    Article  CAS  Google Scholar 

  19. D. Zhu and R.A. Miller, Sintering and Creep Behavior of Plasma-Sprayed Zirconia-and Hafnia-Based Thermal Barrier Coatings, Surf. Coatings Technol., 1998, 108109, p 114-120.

    Article  Google Scholar 

  20. F.M. Pitek and C.G. Levi, Opportunities for TBCs in the ZrO2-YO1.5-TaO2.5 system, Surf. Coatings Technol., 2007, 201(12), p 6044-6050.

    Article  CAS  Google Scholar 

  21. W. Ma, D. Mack, J. Malzbender, R. Vaßen and D. Stöver, Yb2O3 and Gd2O3 Doped Strontium Zirconate for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2008, 28(16), p 3071-3081. https://doi.org/10.1016/j.jeurceramsoc.2008.05.013

    Article  CAS  Google Scholar 

  22. M.O. Jarligo, G. Mauer, D. Sebold, D.E. Mack, R. Vaßen and D. Stöver, Decomposition of Ba(Mg1/3Ta2/3)O3 Perovskite during Atmospheric Plasma Spraying, Surf. Coatings Technol., 2012, 206(8-9), p 2515-2520. https://doi.org/10.1016/j.surfcoat.2011.11.003

    Article  CAS  Google Scholar 

  23. M. Gell, J. Wang, R. Kumar, J. Roth, C. Jiang and E.H. Jordan, Higher Temperature Thermal Barrier Coatings with the Combined Use of Yttrium Aluminum Garnet and the Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2018, 27, p 543-555. https://doi.org/10.1007/s11666-018-0701-7

    Article  CAS  Google Scholar 

  24. R. Kumar, E.H. Jordan, M. Gell, J. Roth, C. Jiang, J. Wang and S. Rommel, CMAS Behavior of Yttrium Aluminum Garnet (YAG) and Yttria-Stabilized Zirconia (YSZ) Thermal Barrier Coatings, Surf. Coat. Technol., 2017, 327, p 126-138.

    Article  CAS  Google Scholar 

  25. E.H. Jordan, M. Gell, C. Jiang, J. Wang, B. Nair, High Temperature Thermal Barrier Coating Made by the Solution Precursor Plasma Spray Process, in Proceedings of the ASME Turbo Expo: Turbine Technical Conference and Exposition, 6, 2014, p V006T02A007. https://doi.org/10.1115/GT2014-26254.

  26. R. Kumar, J. Wang, C. Jiang, D. Cietek, J. Favata, S. Shahbazmohamadi, J. Roth, M. Gell and E.H. Jordan, Low Thermal Conductivity Yttrium Aluminum Garnet Thermal Barrier Coatings Made by the Solution Precursor Plasma Spray: Part I—Processing and Properties, J. Therm. Spray Technol., 2018, 27(5), p 781-793. https://doi.org/10.1007/s11666-018-0728-9

    Article  CAS  Google Scholar 

  27. R. Kumar, C. Jiang, J. Wang, D. Cietek, J. Roth, M. Gell and E.H. Jordan, Low Thermal Conductivity Yttrium Aluminum Garnet Thermal Barrier Coatings Made by the Solution Precursor Plasma Spray: Part II—Planar Pore Formation and CMAS Resistance, J. Therm. Spray Technol., 2018, 27(5), p 794-808. https://doi.org/10.1007/s11666-018-0727-x

    Article  CAS  Google Scholar 

  28. O. Fabrichnaya, S. Lakiza, C. Wang, M. Zinkevich, C.G. Levi and F. Aldinger, Thermodynamic Database for the ZrO2-YO3/2-GdO3/2-AlO3/2 System and Application to Thermal Barrier Coatings, J. Phase Equilibria Diffus., 2006, 27(4), p 343-352.

    CAS  Google Scholar 

  29. R. Vassen, X.X. Cao, F. Tietz, D. Basu, D. Stover and D. Stöver, Zirconates as New Materials for Thermal Barrier Coatings, J. Am. Ceram. Soc., 2004, 83(8), p 2023-2028. https://doi.org/10.1111/j.1151-2916.2000.tb01506.x

    Article  Google Scholar 

  30. G. Suresh, G. Seenivasan, M. Krishnaiah and P.S. Murti, Investigation of the Thermal Conductivity of Selected Compounds of Lanthanum, Samarium and Europium, J. Alloys Compd., 1998, 269(1-2), p L9-L12.

    Article  CAS  Google Scholar 

  31. R. Kumar, D. Cietek, C. Jiang, J. Roth, M. Gell and E.H. Jordan, Influence of Microstructure on the Durability of Gadolinium Zirconate Thermal Barrier Coatings Using APS & SPPS Processes, Surf. Coat. Technol., 2018, 337(C), p 117-125. https://doi.org/10.1016/j.surfcoat.2018.01.004

    Article  CAS  Google Scholar 

  32. M. Gell, E.H. Jordan, M. Teicholz, B.M. Cetegen, N.P. Padture, L. **e, D. Chen, X. Ma and J. Roth, Thermal Barrier Coatings Made by the Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2008, 17, p 124-135.

    Article  CAS  Google Scholar 

  33. E.H. Jordan, C. Jiang and M. Gell, The Solution Precursor Plasma Spray (SPPS) Process: A Review with Energy Considerations, J. Therm. Spray Technol., 2015, 24(7), p 1153-1165. https://doi.org/10.1007/s11666-015-0272-9

    Article  CAS  Google Scholar 

  34. A. Jadhav, N.P. Padture, F. Wu, E.H. Jordan and M. Gell, Thick Ceramic Thermal Barrier Coatings with High Durability Deposited Using Solution-Precursor Plasma Spray, Mater. Sci. Eng. A, 2005, 405, p 313-320. https://doi.org/10.1016/j.msea.2005.06.023

    Article  CAS  Google Scholar 

  35. L. Pawlowski, Suspension and Solution Thermal Spray Coatings, Surf. Coat. Technol., 2009, 203, p 2807-2829.

    Article  CAS  Google Scholar 

  36. L. **e, X. Ma, E.H. Jordan, N.P. Padture, D.T. **ao and M. Gell, Deposition Mechanisms of Thermal Barrier Coatings in the Solution Precursor Plasma Spray Process, Surf. Coatings Technol., 2004, 177-178, p 103-107.

    Article  CAS  Google Scholar 

  37. R. Kumar, S. Rommel, C. Jiang and E.H. Jordan, Effect of CMAS Viscosity on the Infiltration Depth in Thermal Barrier Coatings of Different Microstructures, Surf. Coatings Technol., 2021, 432, 128039. https://doi.org/10.1016/j.surfcoat.2021.128039

    Article  CAS  Google Scholar 

  38. Up To 400% Efficiency Gain Without Compromise « Oerlikon Metco, n.d., https://www.oerlikon.com/metco/en/products-services/coating-equipment/thermal-spray/spray-guns/cascading-arc-landing-page/. Accessed 16 March 2018.

  39. SinplexPro Plasma Spray Gun « OerlikonMetco,n.d., https://www.oerlikon.com/metco/en/products-services/coating-equipment/thermal-spray/spray-guns/coating-equipment-plasma/sinplexpro/. Accessed 16 March 2018.

  40. A. Vardelle, C. Moreau, J. Akedo, H. Ashrafizadeh, C.C. Berndt, J.O. Berghaus, M. Boulos, J. Brogan, A.C. Bourtsalas, A. Dolatabadi, M. Dorfman, T.J. Eden, P. Fauchais, G. Fisher, F. Gaertner, M. Gindrat, R. Henne, M. Hyland, E. Irissou, E.H. Jordan, K.A. Khor, A. Killinger, Y.-C. Lau, C.-J. Li, L. Li, J. Longtin, N. Markocsan, P.J. Masset, J. Matejicek, G. Mauer et al., The 2016 Thermal Spray Roadmap, J. Therm. Spray Technol., 2016, 25(8), p 1376-1440. https://doi.org/10.1007/s11666-016-0473-x

    Article  CAS  Google Scholar 

  41. E.H. Jordan, C. Jiang, J. Roth and M. Gell, Low Thermal Conductivity Yttria-Stabilized Zirconia Thermal Barrier Coatings Using the Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2014, 23, p 849-859.

    Article  CAS  Google Scholar 

  42. V. Viswanathan, G. Dwivedi and S. Sampath, Engineered Multilayer Thermal Barrier Coatings for Enhanced Durability and Functional Performance, J. Am. Ceram. Soc., 2014, 97(9), p 2770-2778. https://doi.org/10.1111/jace.13033

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Advanced Manufacturing Office (AMO) Emerging Research Exploration Award Number DE-EE0008307.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rishi Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Jiang, C., Cottom, B. et al. Development of Solution Precursor Plasma Spray (SPPS) Yttrium Aluminum Garnet (YAG) Coatings for Engine Components Using a High Enthalpy Cascaded Arc Gun: Part I. J Therm Spray Tech 32, 1482–1504 (2023). https://doi.org/10.1007/s11666-023-01573-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-023-01573-7

Keywords

Navigation