Log in

Suspension Plasma Sprayed ZnO Coatings for CO2 Gas Detection

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Hollow spherical ZnO, prepared by hydrothermal synthesis method with a soft template, was dispersed in deionized water to form a uniform suspension. The micromorphology, phase composition and UV absorbance of ZnO powder were analyzed by SEM, EDS, XRD and UV–Vis. The ZnO coatings were deposited on Al2O3 substrates equipped with Pt electrodes to fabricate gas sensors by suspension plasma spraying. The effects of CO2 concentration and relative humidity (RH) on the gas sensing properties of the ZnO coatings at room temperature (~ 25 °C) were studied, and the gas sensing mechanism was discussed. The experimental results elucidate two results: First, the response value rises with the increase of CO2 concentration under the condition of constant RH; second, the responses for concentrations of 3, 4, 5% CO2 rise with RH increasing from 0-60%. Under the condition of 400 ppm CO2, the response rises from 6.87-57.92, with an increase of RH from 20-80%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Millane, S. Greene, J.-A. Rotella, and Y.H. Leang, End-tidal Capnography Provides Reliable Ventilatory Monitoring for Non-intubated Patients Presenting After Sedative Overdose to the Emergency Department, Emerg. Med. Australas., 2020, 32(1), p 164-165. https://doi.org/10.1111/1742-6723.13418

    Article  Google Scholar 

  2. M.M. McNeill and C. Hardy-Tabet, The Effectiveness of Capnography Versus Pulse Oximetry in Detecting Respiratory Adverse Events in the Postanesthesia Care Unit (PACU): A Narrative Review and Synthesis, J. Perianesth. Nurs., 2022, 37(2), p 264-269. https://doi.org/10.1016/j.jopan.2021.03.013

    Article  Google Scholar 

  3. M. Lermuzeaux, H. Meric, B. Sauneuf, S. Girard, H. Normand, F. Lofaso, and N. Terzi, Superiority of Transcutaneous CO2 Over End-tidal CO2 Measurement for Monitoring Respiratory Failure in Nonintubated Patients: A Pilot Study, J. Crit. Care, 2016, 31(1), p 150-156. https://doi.org/10.1016/j.jcrc.2015.09.014

    Article  Google Scholar 

  4. H. Mousavi, Y. Mortazavi, A.A. Khodadadi, M.H. Saberi, and S. Alirezaei, Enormous Enhancement of Pt/SnO2 Sensors Response and Selectivity by their Reduction, to CO in Automotive Exhaust Gas Pollutants Including CO, NOx and C3H8, Appl. Surf. Sci., 2021, 546, p 149120. https://doi.org/10.1016/j.apsusc.2021.149120

    Article  CAS  Google Scholar 

  5. Y. Li, Y.-L. Lu, K.-D. Wu, D.-Z. Zhang, M. Debliquy, and C. Zhang, Microwave-assisted Hydrothermal Synthesis of Copper Oxide-based Gas-sensitive Nanostructures, Rare Met., 2021, 40(6), p 1477-1493. https://doi.org/10.1007/s12598-020-01557-4

    Article  CAS  Google Scholar 

  6. K. Wu, W. Zhang, Z. Zheng, M. Debliquy, and C. Zhang, Room-temperature Gas Sensors Based on Titanium Dioxide Quantum Dots for Highly Sensitive and Selective H2S Detection, Appl. Surf. Sci., 2022, 585, p 152744. https://doi.org/10.1016/j.apsusc.2022.152744

    Article  CAS  Google Scholar 

  7. C. Zhang, Y. Huan, Y. Li, Y. Luo, and M. Debliquy, Low Concentration Isopropanol Gas Sensing Properties of Ag Nanoparticles Decorated In2O3 Hollow Spheres, J. Adv. Ceram., 2022, 11(3), p 379-391. https://doi.org/10.1007/s40145-021-0530-x

    Article  CAS  Google Scholar 

  8. K.-D. Wu, J.-Y. Xu, M. Debliquy, and C. Zhang, Synthesis and NH3/TMA Sensing Properties of CuFe2O4 Hollow Microspheres at Low Working Temperature, Rare Met., 2021, 40(7), p 1768-1777. https://doi.org/10.1007/s12598-020-01609-9

    Article  CAS  Google Scholar 

  9. J. You, X. Chen, B. Zheng, X. Geng, and C. Zhang, Suspension Plasma-Sprayed ZnFe2O4 Nanostructured Coatings for ppm-Level Acetone Detection, J. Therm. Spray Technol., 2017, 26(4), p 728-734. https://doi.org/10.1007/s11666-017-0536-7

    Article  CAS  Google Scholar 

  10. K. Liu, Z. Zheng, J. Xu, and C. Zhang, Enhanced Visible Light-excited ZnSnO3 for Room Temperature ppm-level CO2 Detection, J. Alloy Compd., 2022, 907, p 164440. https://doi.org/10.1016/j.jallcom.2022.164440

    Article  CAS  Google Scholar 

  11. Y. **a, A. Pan, D.W. Gardner, S. Zhao, A.K. Davey, Z. Li, L. Zhao, C. Carraro, and R. Maboudian, Well-connected ZnO Nanoparticle Network Fabricated by In-situ Annealing of ZIF-8 for Enhanced Sensitivity in Gas Sensing Application, Sens. Actuator B Chem., 2021, 344, p 130180. https://doi.org/10.1016/j.snb.2021.130180

    Article  CAS  Google Scholar 

  12. S. Park, S. An, H. Ko, C. **, and C. Lee, Synthesis of Nanograined ZnO Nanowires and Their Enhanced Gas Sensing Properties, ACS Appl. Mater. Interface, 2012, 4(7), p 3650-3656. https://doi.org/10.1021/am300741r

    Article  CAS  Google Scholar 

  13. Y. Liang, S. Wicker, X. Wang, E.S. Erichsen, and F. Fu, Organozinc Precursor-Derived Crystalline ZnO Nanoparticles: Synthesis, Characterization and Their Spectroscopic Properties, Nanomaterials, 2018 https://doi.org/10.3390/nano8010022

    Article  Google Scholar 

  14. H. Chai, Z. Zheng, K. Liu, J. Xu, K. Wu, Y. Luo, H. Liao, M. Debliquy, and C. Zhang, Stability of Metal Oxide Semiconductor Gas Sensors: A Review, IEEE Sens. J., 2022, 22(6), p 5470-5481. https://doi.org/10.1109/JSEN.2022.3148264

    Article  CAS  Google Scholar 

  15. X. Zhou, B. Wang, H. Sun, C. Wang, P. Sun, X. Li, X. Hu, and G. Lu, Template-free Synthesis of Hierarchical ZnFe2O4 Yolk–shell Microspheres for High-sensitivity Acetone Sensors, Nanoscale, 2016, 8(10), p 5446-5453. https://doi.org/10.1039/C5NR06308F

    Article  CAS  Google Scholar 

  16. C.A. Zito, T.M. Perfecto, A.-C. Dippel, D.P. Volanti, and D. Koziej, Low-temperature Carbon Dioxide Gas Sensor Based on Yolk-shell Ceria Nanospheres, ACS Appl. Mater. Interface, 2020, 12(15), p 17745-17751. https://doi.org/10.1021/acsami.0c01641

    Article  CAS  Google Scholar 

  17. C. Zhang, X. Geng, H. Li, P.-J. He, M.-P. Planche, H. Liao, M.-G. Olivier, and M. Debliquy, Microstructure and Gas Sensing Properties of Solution Precursor Plasma-sprayed Zinc Oxide Coatings, Mater. Res. Bull., 2015, 63, p 67-71. https://doi.org/10.1016/j.materresbull.2014.11.044

    Article  CAS  Google Scholar 

  18. X. Geng, C. Zhang, and M. Debliquy, Cadmium Sulfide Activated Zinc Oxide Coatings Deposited by Liquid Plasma Spray for Room Temperature Nitrogen Dioxide Detection under Visible Light Illumination, Ceram. Int., 2016, 42(4), p 4845-4852. https://doi.org/10.1016/j.ceramint.2015.11.170

    Article  CAS  Google Scholar 

  19. X. Geng, J. You, and C. Zhang, Microstructure and Sensing Properties of CdS-ZnO1−x Coatings Deposited by Liquid Plasma Spray and Treated with Hydrogen Peroxide Solution for Nitrogen Dioxide Detection at Room Temperature, J. Alloy Compd., 2016, 687, p 286-293. https://doi.org/10.1016/j.jallcom.2016.06.079

    Article  CAS  Google Scholar 

  20. C. Zhang, X. Geng, J. Li, Y. Luo, and P. Lu, Role of Oxygen Vacancy in Tuning of Optical, Electrical and NO2 Sensing Properties of ZnO1-x Coatings at Room Temperature, Sens. Actuator B Chem., 2017, 248, p 886-893. https://doi.org/10.1016/j.snb.2017.01.105

    Article  CAS  Google Scholar 

  21. R.T. Candidato, J.P. Ontolan, P. Carpio, L. Pawlowski, and R.M. Vequizo, Effects of Precursor Composition used in Solution Precursor Plasma Spray on the Properties of ZnO Coatings for CO2 and UV Light Sensing, Surf. Coat. Technol., 2019, 371, p 395-400. https://doi.org/10.1016/j.surfcoat.2018.10.009

    Article  CAS  Google Scholar 

  22. X. Geng, C. Zhang, Y. Luo, and M. Debliquy, Flexible NO2 Gas Sensors Based on Sheet-like Hierarchical ZnO1−x Coatings Deposited on Polypropylene Papers by Suspension Flame Spraying, J. Taiwan Inst. Chem. E, 2017, 75, p 280-286. https://doi.org/10.1016/j.jtice.2017.03.021

    Article  CAS  Google Scholar 

  23. G. Mittal and S. Paul, Suspension and Solution Precursor Plasma and HVOF Spray: A Review, J. Therm. Spray Technol., 2022, 31(5), p 1443-1475. https://doi.org/10.1007/s11666-022-01360-w

    Article  CAS  Google Scholar 

  24. Z. Bu, X. Zhao, L. Liu, Y. Xue, Y. An, and H. Zhou, Effect of Melting Behavior of Al2O3 Powder on the Structure and Dielectric Properties of Plasma-sprayed Coatings, J. Therm. Spray Technol., 2022, 31(3), p 449-461. https://doi.org/10.1007/s11666-022-01340-0

    Article  CAS  Google Scholar 

  25. X. Liu, X. Lu, Y. Song, S. **a, R. Ren, Y. Wang, D. Zhao, and M. Wang, Plasma-sprayed Graphene Nanosheets/ZnO/Al2O3 Coatings with Highly Efficient Microwave Absorption Properties, J. Therm. Spray Technol., 2021, 30(6), p 1524-1534. https://doi.org/10.1007/s11666-021-01223-w

    Article  CAS  Google Scholar 

  26. B. Zheng, Y. Luo, H. Liao, and C. Zhang, Investigation of the Crystallinity of Suspension Plasma Sprayed Hydroxyapatite Coatings, J. Eur. Ceram. Soc., 2017, 37(15), p 5017-5021. https://doi.org/10.1016/j.jeurceramsoc.2017.07.007

    Article  CAS  Google Scholar 

  27. Y. Huan, K. Wu, C. Li, H. Liao, M. Debliquy, and C. Zhang, Micro-nano Structured Functional Coatings Deposited by Liquid Plasma Spraying, J. Adv. Ceram., 2020, 9(5), p 517-534. https://doi.org/10.1007/s40145-020-0402-9

    Article  CAS  Google Scholar 

  28. B. Liu and H.C. Zeng, Hollow ZnO Microspheres with Complex Nanobuilding Units, Chem. Mater., 2007, 19(24), p 5824-5826. https://doi.org/10.1021/cm702121v

    Article  CAS  Google Scholar 

  29. C. Zhang, G. Liu, K. Liu, and K. Wu, ZnO1−x Coatings Deposited by Atmospheric Plasma Spraying for Room Temperature ppb-level NO2 Detection, Appl. Surf. Sci., 2020, 528, p 147041. https://doi.org/10.1016/j.apsusc.2020.147041

    Article  CAS  Google Scholar 

  30. J.F. Bisson, C. Moreau, M. Dorfman, C. Dambra, and J. Mallon, Influence of Hydrogen on the Microstructure Of Plasma-sprayed Yttria-stabilized Zirconia Coatings, J. Therm. Spray Technol., 2005, 14(1), p 85-90. https://doi.org/10.1361/10599630522422

    Article  Google Scholar 

  31. C. Zhang, J. Wang, and X. Geng, Tungsten Oxide Coatings Deposited by Plasma Spray using Powder and Solution Precursor for Detection of Nitrogen Dioxide Gas, J. Alloy Compd., 2016, 668, p 128-136. https://doi.org/10.1016/j.jallcom.2016.01.219

    Article  CAS  Google Scholar 

  32. Y. Lin and Z. Fan, Compositing Strategies to Enhance the Performance of Chemiresistive CO2 Gas Sensors, Mat. Sci. Semicond. Proc., 2020, 107, p 104820. https://doi.org/10.1016/j.mssp.2019.104820

    Article  CAS  Google Scholar 

  33. T. Thomas, Y. Kumar, J.A. Ramos-Ramon, V. Agarwal, S. Sepulveda-Guzman, R.R.S. Pushpan, S.L. Loredo, and K.C. Sanal, Porous Silicon/α-MoO3 Nanohybrid Based Fast and Highly Sensitive CO2 Gas Sensors, Vacuum, 2021, 184, p 109983. https://doi.org/10.1016/j.vacuum.2020.109983

    Article  CAS  Google Scholar 

  34. D.Y. Kim, H. Kang, N.-J. Choi, K.H. Park, and H.-K. Lee, A Carbon Dioxide Gas Sensor Based on Cobalt Oxide Containing Barium Carbonate, Sens. Actuator B Chem., 2017, 248, p 987-992. https://doi.org/10.1016/j.snb.2017.02.160

    Article  CAS  Google Scholar 

  35. R. Dhahri, S.G. Leonardi, M. Hjiri, L.E. Mir, A. Bonavita, N. Donato, D. Iannazzo, and G. Neri, Enhanced Performance of Novel Calcium/Aluminum Co-doped Zinc Oxide for CO2 Sensors, Sens. Actuator B Chem., 2017, 239, p 36-44. https://doi.org/10.1016/j.snb.2016.07.155

    Article  CAS  Google Scholar 

  36. Y. **a, A. Pan, Y.-Q. Su, S. Zhao, Z. Li, A.K. Davey, L. Zhao, R. Maboudian, and C. Carraro, In-situ Synthesized N-doped ZnO for Enhanced CO2 Sensing: Experiments and DFT Calculations, Sens. Actuator B Chem., 2022, 357, p 131359. https://doi.org/10.1016/j.snb.2022.131359

    Article  CAS  Google Scholar 

  37. N. Rajesh, J.C. Kannan, T. Krishnakumar, A. Bonavita, S.G. Leonardi, and G. Neri, Microwave Irradiated Sn-substituted CdO Nanostructures for Enhanced CO2 Sensing, Ceram. Int., 2015, 41(10 Part B), p 14766-14772. https://doi.org/10.1016/j.ceramint.2015.07.208

    Article  CAS  Google Scholar 

  38. S. Joshi, R.K. Canjeevaram-Balasubramanyam, S.J. Ippolito, Y.M. Sabri, A.E. Kandjani, S.K. Bhargava, and M.V. Sunkara, Straddled Band Aligned CuO/BaTiO3 Heterostructures: Role of Energetics at Nanointerface in Improving Photocatalytic and CO2 Sensing Performance, ACS Appl. Nano Mater., 2018, 1(7), p 3375-3388. https://doi.org/10.1021/acsanm.8b00583

    Article  CAS  Google Scholar 

  39. M.M. Shokravi and S. Nasirian, Improved Carbon Dioxide Gas Sensing Features of Zinc Oxide Nanorods Assisted by an Organic Filler for Dynamic Situations, Appl. Phys. A, 2019, 125(10), p 730. https://doi.org/10.1007/s00339-019-3021-y

    Article  CAS  Google Scholar 

  40. N.B. Tanvir, O. Yurchenko, E. Laubender, and G. Urban, Investigation of Low Temperature Effects on Work Function Based CO2 Gas Sensing of Nanoparticulate CuO Films, Sens. Actuator B Chem., 2017, 247, p 968-974. https://doi.org/10.1016/j.snb.2016.11.020

    Article  CAS  Google Scholar 

  41. F. Panto, S.G. Leonardi, E. Fazio, P. Frontera, A. Bonavita, G. Neri, P. Antonucci, F. Neri, and S. Santangelo, CO2 Sensing Properties of Electro-spun Ca-doped ZnO Fibres, Nanotechnology, 2018, 29(30), p 305501. https://doi.org/10.1088/1361-6528/aac27c

    Article  CAS  Google Scholar 

  42. M. Panday, G.K. Upadhyay, and L.P. Purohit, Sb Incorporated SnO2 Nanostructured Thin Films for CO2 Gas Sensing and Humidity Sensing Applications, J. Alloy Compd., 2022, 904, p 164053. https://doi.org/10.1016/j.jallcom.2022.164053

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Outstanding Youth Foundation of Jiangsu Province of China under Grant No. BK20211548, the Natural Science Foundation of China under Grant No. 51872254, the National Key Research and Development Program of China under Grant No. 2017YFE0115900 and the Graduate Research and Practice Innovation Plan of Graduate Education Innovation Project in Jiangsu Province under Grant No. KYCX22. 3480.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K., Liu, K., Liao, H. et al. Suspension Plasma Sprayed ZnO Coatings for CO2 Gas Detection. J Therm Spray Tech 32, 72–81 (2023). https://doi.org/10.1007/s11666-022-01479-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01479-w

Keywords

Navigation