Log in

Crystallization Behavior of Novel Al2O3-YAG Amorphous Ceramic Coating Deposited by Atmospheric Plasma Spraying

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Al2O3-YAG amorphous ceramic coating is expected to apply to harsh wear service due to its excellent crack propagation resistance, but the crystallization of this coating may affect its service stability. Therefore, the crystallization behavior of the Al2O3-YAG coating prepared by atmospheric plasma spray (APS) was investigated in this study. The results showed that this coating had excellent microstructure stability over a broad temperature range and had a higher activation energy during non-isothermal crystallization process. The isothermal DSC curves showed that the crystallization process of this coating was controlled by the change in external thermodynamic conditions. The grain growth mechanism for α-Al2O3 and YAG was from three-dimensional direction bulk growth to one-dimensional direction flake thickening. The calculated fragility index showed that the amorphous ceramic coating had better stability and higher plastic deformation capacity than other typical brittle materials at its critical temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. C.-P. Jiang, Y.-Z. **ng, F.-Y. Zhang and J.-M. Hao, Microstructure and Corrosion Resistance of Fe/Mo Composite Amorphous Coatings Prepared by Air Plasma Spraying, Int. J. Min. Met. Mater., 2012, 19, p 657–662.

    Article  CAS  Google Scholar 

  2. Y. Yang, C. Zhang, Y. Peng, Y. Yu and L. Liu, Effects of Crystallization on the Corrosion Resistance of Fe-based Amorphous Coatings, Corros. Sci., 2012, 59, p 10–19.

    Article  CAS  Google Scholar 

  3. A. Singh, S.R. Bakshi, A. Agarwal and S.P. Harimkar, Microstructure and Tribological Behavior of Spark Plasma Sintered Iron-based Amorphous Coatings, Mater. Sci. Eng. A, 2010, 527, p 5000–5007.

    Article  Google Scholar 

  4. G. Wang, Z. Huang, P. **ao and X. Zhu, Spraying of Fe-based Amorphous Coating with High Corrosion Resistance by HVAF, J. Manuf. Process., 2016, 22, p 34–38.

    Article  CAS  Google Scholar 

  5. C. Zhang, R.Q. Guo, Y. Yang, Y. Wu and L. Liu, Influence of the Size of Spraying Powders on the Microstructure and Corrosion Resistance of Fe-based Amorphous Coating, Electrochim. Acta., 2011, 56, p 6380–6388.

    Article  CAS  Google Scholar 

  6. A.L. Greer, Confusion by Design, Nat. (London), 1993, 366, p 303–304.

    Article  Google Scholar 

  7. T. Egami, Atomistic Mechanism of Bulk Metallic Glass Formation, J. Non-Cryst. Solids., 2003, 317, p 30–33.

    Article  CAS  Google Scholar 

  8. A. Inoue and A. Takeuchi, Recent Progress in Bulk Glassy, Nanoquasicrystalline and Nanocrystalline Alloys, Mater. Sci. Eng. A, 2004, 375–377, p 16–30.

    Article  Google Scholar 

  9. Z. Zhou, L. Wang, D.Y. He, F.C. Wang and Y.B. Liu, Microstructure and Electrochemical Behavior of Fe-Based Amorphous Metallic Coatings Fabricated by Atmospheric Plasma Spraying, J. Therm. Spray Technol., 2010, 20, p 344–350.

    Article  Google Scholar 

  10. S.D. Zhang, W.L. Zhang, S.G. Wang, X.J. Gu and J.Q. Wang, Characterisation of Three-dimensional Porosity in an Fe-based Amorphous Coating and its Correlation with Corrosion Behaviour, Corros. Sci., 2015, 93, p 211–221.

    Article  CAS  Google Scholar 

  11. Z. Wang, X. Zhang, J. Cheng, J. Lin and Z. Zhou, Cavitation Erosion Resistance of Fe-Based Amorphous/Nanocrystal Coatings Prepared by High-Velocity Arc Spraying, J. Therm. Spray Technol., 2014, 23, p 742–749.

    Article  CAS  Google Scholar 

  12. P. Gong, K. Yao and S. Zhao, Cu-alloying Effect on Crystallization Kinetics of Ti41Zr25Be28Fe6 Bulk Metallic Glass, J. Therm. Anal. Calorim., 2015, 121, p 697–704.

    Article  CAS  Google Scholar 

  13. Y.T. Chen, S.H. Lin and W.H. Hsieh, Differential Scanning Calorimetric Determination of the Thermal Properties of Amorphous Co60Fe20B20 and Co40Fe40B20 Thin Films, Appl. Phys. Lett., 2013, 102, p 051905.

    Article  Google Scholar 

  14. Y. Zhang, J. Chen, G.L. Chen and X.J. Liu, Glass Formation Mechanism of Minor Yttrium Addition in CuZrAl Alloys, Appl. Phys. Lett., 2006, 89, p 131904.

    Article  Google Scholar 

  15. Y. Lu, Y. Huang, X. Wei and J. Shen, Close Correlation Between Transport Properties and Glass-forming Ability of an FeCoCrMoCBY Alloy System, Intermetallics, 2012, 30, p 144–147.

    Article  Google Scholar 

  16. M. Salehi, S.G. Shabestari and S.M.A. Boutorabi, Nano-crystal Development and Thermal Stability of Amorphous Al–Ni–Y–Ce Alloy, J. Non-Cryst. Solids., 2013, 375, p 7–12.

    Article  CAS  Google Scholar 

  17. X. Zhou, H. Zhou, Z. Zhao, R. Liu and Y. Zhou, A Study of Non-isothermal Primary Crystallization Kinetics and Soft Magnetic Property of Co65Fe4Ni2Si15B14 Amorphous Alloy, J. Alloys Compd., 2012, 539, p 210–214.

    Article  CAS  Google Scholar 

  18. H.J. Kim and Y.J. Kim, Amorphous Phase Formation of the Pseudo-binary Al2O3–ZrO2 Alloy During Plasma Spray Processing, J. Mater. Sci., 1999, 34, p 29–33.

    Article  CAS  Google Scholar 

  19. X. Song, T. Suhonen, C. Sun et al., Microstructure, Microhardness and Crystallization Behavior of Amorphous Al2O3-YSZ Coating prepared by Air Plasma Spraying, Surf. Rev. Lett., 2015, 22, p 1550047.

    Article  CAS  Google Scholar 

  20. T. Chraska, Z. Pala, R. Mušálek, J. Medřický and M. Vilémová, Post-treatment of Plasma-Sprayed Amorphous Ceramic Coatings by Spark Plasma Sintering, J. Therm. Spray Technol., 2015, 24, p 637–643.

    Article  CAS  Google Scholar 

  21. K. Yang, J. Rong, Y. Zhuang et al., Microstructure and High PV Wear Behavior of Novel Amorphous Al2O3-YAG Ceramic Coating Fabricated by Atmospheric Plasma Spraying, J. Therm. Spray Technol., 2019, 28, p 803–825.

    Article  CAS  Google Scholar 

  22. K. Yang, J. Rong, J. Feng et al., In-situ fabrication of amorphous/eutectic Al2O3–YAG ceramic composite coating via atmospheric plasma spraying, J. Eur. Ceram. Soc., 2016, 36, p 4261–4267.

    Article  CAS  Google Scholar 

  23. K. Yang, J. Rong, J. Feng et al., Excellent Wear Resistance of Plasma-sprayed Amorphous Al2O3–Y3Al5O12 Ceramic Coating, Surf. Coat. Technol., 2017, 326, p 96–102.

    Article  CAS  Google Scholar 

  24. T.A. Parthasarathy, T.-I. Mah and K. Keller, Creep Mechanism of Polycrystalline Yttrium Aluminum Garnet, J. Am. Ceram. Soc., 1992, 75, p 1756–1759.

    Article  CAS  Google Scholar 

  25. Y. Liu, Z.-F. Zhang, B. King, J. Halloran and R.M. Laine, Synthesis of Yttrium Aluminum Garnet from Yttrium and Aluminum Isobutyrate Precursors, J. Am. Ceram. Soc., 1996, 79, p 385–394.

    Article  CAS  Google Scholar 

  26. J. Rong, K. Yang, Y. Zhuang et al., Non-isothermal Crystallization Kinetics of Al2O3-YAG Amorphous Ceramic Coating Deposited via Plasma Spraying, J. Am. Ceram. Soc., 2018, 101, p 2888–2900.

    Article  CAS  Google Scholar 

  27. Z. Zhang, K. Yang, J. Rong et al., Study on Process Optimization of Sprayable Powders and Deposition Performance of Amorphous Al2O3-YAG Coatings, Coatings, 2020, 10, p 1158.

    Article  CAS  Google Scholar 

  28. J. Medricky, F. Lukac, S. Csaki et al., Improvement of Mechanical Properties of Plasma Sprayed Al2O3-ZrO2-SiO2 Amorphous Coatings by Surface Crystallization, Materials., 2019, 12, p 3232.

    Article  CAS  Google Scholar 

  29. M. Lasocka, The Effect of Scanning Rate on Glass Transition Temperature of Splat-cooled Te85Ge15, Mater. Sci. Eng. A, 1976, 23, p 173–177.

    Article  CAS  Google Scholar 

  30. M. Avrami, Kinetics of Phase Change I General Theory, J. Chem. Phys., 1939, 7, p 1103–1112.

    Article  CAS  Google Scholar 

  31. A. Melvin, Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei, J. Chem. Phys., 1940, 8, p 212–224.

    Article  Google Scholar 

  32. J. Málek, The Applicability of Johnson-Mehl-Avrami Model in the Thermal Analysis of the Crystallization Kinetics of Glasses, Thermochim. Acta., 1995, 267, p 61–73.

    Article  Google Scholar 

  33. H.E. Kissinger, Reaction Kinetics in Differential Thermal Analysis, Anal. Chem., 1957, 29, p 1702–1706.

    Article  CAS  Google Scholar 

  34. T. Ozawa, Kinetics of Non-isothermal Crystallization, Polymer, 1971, 12, p 150–158.

    Article  CAS  Google Scholar 

  35. S. Saraswat, N. Mehta and S.D. Sharma, Applicability of Augis-Bennett Relation for Determination of Activation Energy of Glass Transition in Some Se rich Chalcogenide Glasses, J. Mater. Res. Technol., 2016, 5, p 111–116.

    Article  CAS  Google Scholar 

  36. J.T. Zhang, W.M. Wang, H.J. Ma et al., Isochronal and Isothermal Crystallization Kinetics of Amorphous Fe-based Alloys, Thermochim. Acta., 2010, 505, p 41–46.

    Article  CAS  Google Scholar 

  37. P. Gong, S. Zhao, X. Wang and K. Yao, Non-isothermal Crystallization Kinetics and Glass-forming Ability of Ti41Zr25Be28Fe6 Bulk Metallic Glass Investigated by Differential Scanning Calorimetry, Appl. Phys. A., 2015, 120, p 145–153.

    Article  CAS  Google Scholar 

  38. A.T. Patel and A. Pratap, Kinetics of Crystallization of Zr52Cu18Ni14Al10Ti6 Metallic Glass, J. Therm. Anal. Calorim., 2011, 107, p 159–165.

    Article  Google Scholar 

  39. T. Ozawa, A New Method of Analyzing Thermogravimetric Data, Bull. Chem. Soc. Jpn., 1965, 38, p 1881–1886.

    Article  CAS  Google Scholar 

  40. J. Blazquez, C. Conde and A. Conde, Non-isothermal Approach to Isokinetic Crystallization Processes: Application to the Nanocrystallization of HITPERM Alloys, Acta Mater., 2005, 53, p 2305–2311.

    Article  CAS  Google Scholar 

  41. J.W. Christian, The Theory of Transformations in Metals and Alloys: An Advanced Text in Physical Metallurgy[M], Pergamon Press, UK, 1965.

    Google Scholar 

  42. S. Ranganathan and M. Heimendahl, The Three Activation Energies with Isothermal Transformations Applications to Metallic Glasses, J. Mater. Sci., 1981, 16, p 2401–2404.

    Article  CAS  Google Scholar 

  43. J. Hyun Na, M.D. Demetriou and W.L. Johnson, Fragility of Iron-based Glasses, Appl. Phys. Lett., 2011, 99, p 161902.

    Article  Google Scholar 

  44. C.A. Angell, Formation of Glasses From Liquids and Biopolymers, Science, 1995, 267, p 1924–1935.

    Article  CAS  Google Scholar 

  45. C.A. Angell, Relaxation in Liquids, Polymers and Plastic Crystals — Strong Fragile Patterns and Problems, J. Non-Cryst. Solids., 1991, 131, p 13–31.

    Article  Google Scholar 

  46. H.E. Atyia and A.S. Farid, Non-isothermal Crystallization Kinetics of Ternary Se90Te10−x Pbx Glasses, J. Cryst. Growth., 2016, 436, p 125–133.

    Article  CAS  Google Scholar 

  47. I.S. Ram and K. Singh, Study of Glass-Transition Kinetics of Pb-Modified Se80In20 System by Using Non-isothermal Differential Scanning Calorimetry, Int. J. Thermophys., 2013, 35, p 123–135.

    Article  Google Scholar 

  48. D.N. Perera, Compilation of the Fragility Parameters for Several Glass-forming Metallic Alloys, J. Phys. Conden. Matter., 1999, 11, p 3807.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is jointly supported by Sub-project of Key Basic Research Projects of Basic Strengthening Program (Grant No. 172-04), National Nature Science Foundation of China (Grant No. 51772311) and Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2016230).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Yang, K., Ai, Y. et al. Crystallization Behavior of Novel Al2O3-YAG Amorphous Ceramic Coating Deposited by Atmospheric Plasma Spraying. J Therm Spray Tech 31, 462–476 (2022). https://doi.org/10.1007/s11666-022-01337-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01337-9

Keywords

Navigation