Log in

Elemental Composition, Phase Diagram, Microstructure, Fabrication Processes, and Mechanical Properties of Ti2AlNb Alloy: A Review

  • Review
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The Ti2AlNb alloy is a refractory material with the potential to replace Ni-based alloys in the manufacturing process of aerospace engines. However, the development of this alloy is still in the research stage, requiring further investigation to promote its industrial application. Therefore, this paper provides an overview of the alloy, starting from its elemental composition and encompassing its microstructural morphology, fabrication processes, and mechanical properties. First, this paper presents the nine common alloying elements (Al, Nb, Mo, Zr, Fe, V, W, Ta, and Si), which play various roles in determining the alloy's microstructure and mechanical performance. Then, the paper presents three typical microstructures and the corresponding microstructure regulation processes, providing references for microstructure regulation. In the regulation process, although there are seven manufacturing processes (Casting, Forming under pressure, Machining, Welding and joining, Powder metallurgy, Additive manufacturing, and Surface treatment) currently applied to the industrialization of this alloy, certain shortcomings still exist, indicating significant research opportunities. Finally, the paper summarizes the relationships between the alloy's typical microstructures and its mechanical properties. In conclusion, the work presented in this paper offers a clear reference for advancing the industrial application of the alloy and encourages future researchers to contribute to the further development of this field based on the foundation established by this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Copyright © 2003 Wiley‐VCH Verlag GmbH & Co. KGaA

Fig. 6
Fig. 7

Copyright © 2003 Wiley‐VCH Verlag GmbH & Co. KGaA

Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Reproduced from International Journal of Lightweight Materials and Manufacture under the terms of the Creative Commons Attribution license

Fig. 18
Fig. 19

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (e), (f) These figures were published in Aerospace Science and Technology, Vol 14, L. Tan, Z. Yao, W. Zhou, H. Guo, Y. Zhao, Microstructure and properties of electron beam welded joint of Ti-22Al-25Nb/TC11, Page Nos. 302-306, Copyright Elsevier 2010

Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Copyright © 2003 Wiley‐VCH Verlag GmbH & Co. KGaA

Fig. 26

© 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany

Fig. 27
Fig. 28

Copyright © 2003 Wiley‐VCH Verlag GmbH & Co. KGaA

References

  1. D. Banerjee, A. Gogia, T. Nandi, and V. Joshi, A New Ordered Orthorhombic Phase in a Ti3AlNb Alloy, Acta Metall., 1988, 36(4), p 871–882

    Article  CAS  Google Scholar 

  2. H. Zhang, N. Yan, H. Liang, and Y. Liu, Phase Transformation and Microstructure Control of Ti2AlNb-Based Alloys: A Review, J. Mater. Sci. Technol., 2021, 80, p 203–216

    Article  CAS  Google Scholar 

  3. K. Goyal and N. Sardana, Mechanical Properties of the Ti2AlNb Intermetallic: A Review, Trans. Indian Inst. Met., 2021, 74(8), p 1839–1853

    Article  Google Scholar 

  4. A. Illarionov, S. Stepanov, I. Naschetnikova, A. Popov, P. Soundappan, K. Raman, and S. Suwas, A Review—Additive Manufacturing of Intermetallic Alloys Based on Orthorhombic Titanium Aluminide Ti2AlNb, Materials, 2023, 16(3), p 991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. J. Kumpfert, Intermetallic Alloys Based on Orthorhombic Titanium Aluminide, Adv. Eng. Mater., 2001, 3(11), p 851–864

    Article  CAS  Google Scholar 

  6. A. Gogia, T. Nandy, D. Banerjee, T. Carisey, J. Strudel, and J. Franchet, Microstructure and Mechanical Properties of Orthorhombic Alloys in the Ti-Al-Nb System, Intermetallics, 1998, 6(7–8), p 741–748

    Article  CAS  Google Scholar 

  7. B. Lu, R. Yang, Y. Cui, and D. Li, A Comparison Study of Microstructure and Mechanical Properties of Ti-24Al-14Nb-3V-0.5 Mo with and Without Si, Metall. Mater. Trans. A, 2000, 31, p 2205–2217

    Article  Google Scholar 

  8. Y. Zhang, Q. Cai, Z. Ma, C. Li, L. Yu, and Y. Liu, Solution Treatment for Enhanced Hardness in Mo-Modified Ti2AlNb-Based Alloys, J. Alloys Compd., 2019, 805, p 1184–1190

    Article  CAS  Google Scholar 

  9. D. Wei, J. Li, T. Zhang, and H. Kou, Oxidation Behavior of Zr-Containing Ti2AlNb-Based Alloy at 800 °C, Trans. Nonferrous Met. Soc. China, 2015, 25(3), p 783–790

    Article  Google Scholar 

  10. L. Germann, D. Banerjee, J. Guédou, and J. Strudel, Effect of Composition on the Mechanical Properties of Newly Developed Ti2AlNb-Based Titanium Aluminide, Intermetallics, 2005, 13(9), p 920–924

    Article  CAS  Google Scholar 

  11. Y. Mao, M. Hagiwara, and S. Emura, Creep Behavior and Tensile Properties of Mo-and Fe-Added Orthorhombic Ti-22Al-11Nb-2Mo-1Fe Alloy, Scripta Materialia, 2007, 57(3), p 261–264

    Article  CAS  Google Scholar 

  12. A. Illarionov, S. Demakov, F. Vodolazskiy, S. Stepanov, S. Illarionova, M. Shabanov, and A. Popov, Alloys Based on Orthorhombic Intermetallic Ti2AlNb: Phase Composition, Alloy. Struct. Prop. Metall., 2023, 67(3), p 305–323

    CAS  Google Scholar 

  13. F. Tang, S. Nakazawa, and M. Hagiwara, The Effect of Quaternary Additions on the Microstructures and Mechanical Properties of Orthorhombic Ti2AlNb-Based Alloys, Mater. Sci. Eng. A, 2002, 329, p 492–498

    Article  Google Scholar 

  14. G. Chen, X. Wang, K. Ni, S. Hao, J. Cao, J. Ding, and X. Zhang, Investigation on the 1000, 1150 and 1400 °C Isothermal Section of the Ti-Al-Nb System, Intermetallics, 1996, 4(1), p 13–22

    Article  CAS  Google Scholar 

  15. S. Xu, X. Ding, Y. Xu, Y. Liang, X. Xu, T. Ye, J. He, and J. Lin, Phase Equilibria of the Ti-Al-Nb System at 1400 °C, J. Alloys Compd., 2018, 730, p 270–278

    Article  CAS  Google Scholar 

  16. S. Xu, Y. Xu, Y. Liang, X. Xu, S. Gao, Y. Wang, J. He, and J. Lin, Phase Equilibria of the Ti-Al-Nb System at 1300 °C, J. Alloys Compd., 2017, 724, p 339–347

    Article  CAS  Google Scholar 

  17. V. Witusiewicz, A. Bondar, U. Hecht, and T. Velikanova, The Al-B-Nb-Ti System: IV. Experimental Study and Thermodynamic Re-Evaluation of the Binary Al-Nb and Ternary Al-Nb-Ti Systems, J. Alloys Compd., 2009, 472(1), p 133–161

    Article  CAS  Google Scholar 

  18. U. Kattner and W. Boettinger, Thermodynamic Calculation of the Ternary Ti-Al-Nb System, Mater. Sci. Eng. A, 1992, 152(1), p 9–17

    Article  Google Scholar 

  19. D. Cupid, O. Fabrichnaya, O. Rios, F. Ebrahimi, and H. Seifert, Thermodynamic Re-assessment of the Ti-Al-Nb System, Int. J. Mater. Res., 2009, 100(2), p 218–233

    Article  CAS  Google Scholar 

  20. S. Xu, X. Xu, Y. Xu, Y. Liang, and J. Lin, Phase Transformations and Phase Equilibria of a Ti-46.5Al-16.5Nb Alloy, Mater. Des., 2016, 101, p 88–94

    Article  CAS  Google Scholar 

  21. C. Boehlert, B. Majumdar, V. Seetharaman, and D. Miracle, Part I. The Microstructural Evolution in Ti-Al-Nb O+ BCC Orthorhombic Alloys, Metall. Mater. Trans. A, 1999, 30, p 2305–2323

    Article  Google Scholar 

  22. N. Kazantseva and S. Lepikhin, Study of the Ti-Al-Nb Phase Diagram, Phys. Met. Metallogr., 2006, 102, p 169–180

    Article  Google Scholar 

  23. B. Wu, M. Zinkevich, F. Aldinger, M. Chu, and J. Shen, Prediction of the Ordering Behaviours of the Orthorhombic Phase Based on Ti2AlNb Alloys by Combining Thermodynamic Model with ab Initio Calculation, Intermetallics, 2008, 16(1), p 42–51

    Article  CAS  Google Scholar 

  24. K. Muraleedharan, A. Gogia, T. Nandy, D. Banerjee, and S. Lele, Transformations in a Ti-24AI-15Nb Alloy: Part I. Phase Equilibria and Microstructure, Metall. Mater. Trans. A, 1992, 23(2), p 401–415

    Article  Google Scholar 

  25. K. Muraleedharan, T. Nandy, D. Banerjee, and S. Lele, Transformations in a Ti-24Al-15Nb Alloy: Part II. A Composition Invariant βo → O Transformation, Metall. Trans. A, 1992, 23(2), p 417–431

    Article  Google Scholar 

  26. M. Peters., C. Leyens., Titanium and Titanium Alloys: Fundamentals and Applications. Wiley, New York (2003).

  27. D. Banerjee, The Intermetallic Ti2AlNb, Progress Mater. Sci., 1997, 42(1), p 135–158

    Article  CAS  Google Scholar 

  28. H. Zhang, Y. Zhang, H. Liang, L. Yu, and Y. Liu, Effect of the Primary O Phase on Thermal Deformation Behavior of a Ti2AlNb-Based Alloy, J. Alloys Compd., 2020, 846, p 156458

    Article  CAS  Google Scholar 

  29. H. Zhang, H. Li, Q. Guo, Y. Liu, and L. Yu, Hot Deformation Behavior of Ti-22Al-25Nb Alloy by Processing Maps and Kinetic Analysis, J. Mater. Res., 2016, 31(12), p 1764–1772

    Article  CAS  Google Scholar 

  30. K. Muraleedharan, T.K. Nandy, D. Banerjee, and S. Lele, Phase Stability and Ordering Behaviour of the O Phase in Ti-Al-Nb Alloys, Intermetallics, 1995, 3(3), p 187–199

    Article  CAS  Google Scholar 

  31. S. van Bohemen, A. Kamp, R. Petrov, L. Kestens, and J. Sietsma, Nucleation and Variant Selection of Secondary α Plates in a β Ti Alloy, Acta Materialia, 2008, 56(20), p 5907–5914

    Article  Google Scholar 

  32. M. Salib, J. Teixeira, L. Germain, E. Lamielle, N. Gey, and E. Aeby-Gautier, Influence of Transformation Temperature on Microtexture Formation Associated with α Precipitation at β Grain Boundaries in a β Metastable Titanium Alloy, Acta Materialia, 2013, 61(10), p 3758–3768

    Article  CAS  Google Scholar 

  33. R. Shi, V. Dixit, H. Fraser, and Y. Wang, Variant Selection of Grain Boundary α by Special Prior β Grain Boundaries in Titanium Alloys, Acta Materialia, 2014, 75, p 156–166

    Article  CAS  Google Scholar 

  34. R. Shi, V. Dixit, G. Viswanathan, H. Fraser, and Y. Wang, Experimental Assessment of Variant Selection Rules for Grain Boundary α in Titanium Alloys, Acta Materialia, 2016, 102, p 197–211

    Article  CAS  Google Scholar 

  35. T. Furuhara, H. Nakamori, and T. Maki, Crystallography of α Phase Precipitated on Dislocations and Deformation Twin Boundaries in a β Titanium Alloy, Materials Transactions, JIM (1952), 1992, 56(9), p 1020–1029

    CAS  Google Scholar 

  36. N. Kazantseva, S. Demakov, and A. Popov, Microstructure and Plastic Deformation of Orthorhombic Titanium Aluminides Ti2AlNb. III. Formation of Transformation Twins upon the B2 → O Phase Transformation, Phys. Met. Metallogr., 2007, 103(4), p 378–387

    Article  Google Scholar 

  37. Y. Zhou, W. Li, D. Wang, L. Zhang, K. Ohara, J. Shen, T. Ebel, and M. Yan, Selective Laser Melting Enabled Additive Manufacturing of Ti-22Al-25Nb Intermetallic: Excellent Combination of Strength and Ductility, and Unique Microstructural Features Associated, Acta Materialia, 2019, 173, p 117–129

    Article  CAS  Google Scholar 

  38. L. Bendersky and W. Boettinger, Phase Transformations in the (Ti, Nb) 3 Al Section of the Ti-Al-Nb System—II. Experimental Tem Study of Microstructures, Acta metallurgica et materialia, 1994, 42(7), p 2337–2352

    Article  CAS  Google Scholar 

  39. F. Sadi and C. Servant, On the B2 →O Phase Transformation in Ti-Al-Nb Alloys, Mater. Sci. Eng. A, 2003, 346(1), p 19–28

    Article  Google Scholar 

  40. W. Wang, W. Zeng, D. Li, B. Zhu, Y. Zheng, and X. Liang, Microstructural evolution and tensile behavior of Ti2AlNb alloys based α2-phase decomposition, Mater. Sci. Eng. A, 2016, 662, p 120

    Article  CAS  Google Scholar 

  41. Z. Huang, P. Lin, and J. Shen, Origin of the O Phase and its Effect on the Mechanical Properties of Rolled Ti-22Al-25Nb Alloy Sheets, Mater. High Temp., 2021, 38(2), p 103–113

    Article  CAS  Google Scholar 

  42. O. Khadzhieva, A. Illarionov, and A. Popov, Effect of Aging on Structure and Properties of Quenched Alloy Based on Orthorhombic Titanium Aluminide Ti2AlNb, Phys. Met. Metall., 2014, 115(1), p 12–20

    Article  Google Scholar 

  43. Y. Wu and S. Hwang, The Effect of Aging on Microstructure of the O-Phase in Ti-24Al-14Nb-3V-0.5Mo Alloy, Mater. Lett., 2001, 49(2), p 131–136

    Article  CAS  Google Scholar 

  44. W. Wang, W. Zeng, C. Xue, X. Liang, and J. Zhang, Microstructure Control and Mechanical Properties from Isothermal Forging and Heat Treatment of Ti-22Al-25Nb (at.%) Orthorhombic Alloy, Intermetallics, 2015, 56, p 79–86

    Article  CAS  Google Scholar 

  45. J. Peng, S. Li, M. Yong, and X. Sun, Phase Transformation and Microstructures in Ti-Al-Nb-Ta System, Mater. Lett., 2002, 53(1–2), p 57–62

    Article  CAS  Google Scholar 

  46. W. Wang, W. Zeng, C. Xue, X. Liang, and J. Zhang, Microstructural Evolution, Creep, and Tensile Behavior of a Ti-22Al-25Nb (at.%) Orthorhombic Alloy, Mater. Sci. Eng. A, 2014, 603, p 176–184

    Article  CAS  Google Scholar 

  47. C. Xue, W. Zeng, W. Wang, X. Liang, and J. Zhang, Quantitative Analysis on Microstructure Evolution and Tensile Property for the Isothermally Forged Ti2AlNb Based Alloy During Heat Treatment, Mater. Sci. Eng. A, 2013, 573, p 183

    Article  CAS  Google Scholar 

  48. W. Wang, W. Zeng, C. Xue, X. Liang, and J. Zhang, Quantitative Analysis of the Effect of Heat Treatment on Microstructural Evolution and Microhardness of an Isothermally Forged Ti-22Al-25Nb (at.%) Orthorhombic Alloy, Intermetallics, 2014, 45, p 29–37

    Article  Google Scholar 

  49. M. Li, Q. Cai, Y. Liu, Z. Ma, Z. Wang, Y. Huang, and H. Li, Formation of Fine B2/β+O Structure and Enhancement of Hardness in the Aged Ti2AlNb-Based Alloys Prepared by Spark Plasma Sintering, Metall. Mater. Trans. A, 2017, 48(9), p 4365

    Article  CAS  Google Scholar 

  50. M. Hagiwara, S. Emura, A. Araoka, Y. Seung, and N. Woo, The Effect of Lamellar Morphology on Tensile and High-Cycle Fatigue Behavior of Orthorhombic Ti-22Al-27Nb Alloy, Metall. Mater. Trans. A, 2004, 35(7), p 2161–2170

    Article  Google Scholar 

  51. Y. Zhang, Q. Cai, and Y. Liu, Formation of Diverse B2+O Structure and Hardness of Mo-Modified Ti-22Al-25Nb Alloys Upon Cooling, Vacuum, 2019, 165, p 199–206

    Article  CAS  Google Scholar 

  52. Q. Han, X. Lei, H. Yang, X. Yang, Z. Su, S. Rui, N. Wang, X. Ma, H. Cui, and H. Shi, Effects of Temperature and Load on Fretting Fatigue Induced Geometrically Necessary Dislocation Distribution in Titanium Alloy, Mater. Sci. Eng. A, 2021, 800, p 140308

    Article  CAS  Google Scholar 

  53. Q. Han, S. Rui, W. Qiu, Y. Su, X. Ma, Z. Su, H. Cui, and H. Shi, Effect of Crystal Orientation on the Indentation Behaviour of Ni-Based Single Crystal Superalloy, Mater. Sci. Eng. A, 2020, 773, p 138893

    Article  CAS  Google Scholar 

  54. J. Yang, G. Wang, X. Jiao, Y. Li, and K. Zhang, Dynamic Spheroidisation Behaviour of the Lamellar Ti-22Al-25Nb Alloy During Hot Compression, Mater. Sci. Technol., 2018, 34(8), p 961–967

    Article  CAS  Google Scholar 

  55. C. Boehlert, The Effects of Forging and Rolling on Microstructure in O+BCC Ti-Al-Nb Alloys, Mater. Sci. Eng. A, 2000, 279(1), p 118–129

    Article  Google Scholar 

  56. H. Zhang, C. Li, Z. Ma, L. Yu, H. Li, and Y. Liu, Morphology and Quantitative Analysis of O Phase During Heat Treatment of Hot-Deformed Ti2AlNb-Based Alloy, Int. J. Miner. Metall. Mater, 2018, 25(10), p 1191–1200

    Article  CAS  Google Scholar 

  57. J. Yang, G. Wang, W. Zhang, W. Chen, X. Jiao, and K. Zhang, Microstructure Evolution and Mechanical Properties of P/M Ti-22Al-25Nb Alloy During Hot Extrusion, Mater. Sci. Eng. A, 2017, 699, p 210–216

    Article  CAS  Google Scholar 

  58. Y. Zhou, D. Wang, L. Song, A. Mukhtar, D. Huang, C. Yang, and M. Yan, Effect of Heat Treatments on the Microstructure and Mechanical Properties of Ti2AlNb Intermetallic Fabricated by Selective Laser Melting, Mater. Sci. Eng. A, 2021, 817, p 141352

    Article  CAS  Google Scholar 

  59. X. Yang, B. Zhang, Q. Bai, and G. **e, Correlation of Microstructure and Mechanical Properties of Ti2AlNb Manufactured by SLM and Heat Treatment, Intermetallics, 2021, 139, p 107367

    Article  CAS  Google Scholar 

  60. C. Xue, W. Zeng, W. Wang, X. Liang, and J. Zhang, Quantitative Analysis on Microstructure Evolution and Tensile Property for the Isothermally Forged Ti2AlNb Based Alloy During Heat Treatment, Mater. Sci. Eng. A, 2013, 573, p 183–189

    Article  CAS  Google Scholar 

  61. Y. He, R. Hu, W. Luo, T. He, Y. Lai, Y. Du, and X. Liu, Microstructure and Mechanical Properties of a New Ti2AlNb-Based Alloy After Aging Treatment, Rare Metals, 2018, 37(11), p 942–951

    Article  CAS  Google Scholar 

  62. Y. Huang, Y. Liu, Y. Zhang, and H. Liang, Thermal Stability and Mechanical Properties of Ti-22Al-25Nb Alloy with Different Initial Microstructures, J. Alloys. Compd., 2020, 842, p 155794

    Article  CAS  Google Scholar 

  63. H. Zhang, Y. Zhang, H. Liang, and Y. Liu, Influence of Cooling Rates on Microstructure and Tensile Properties of a Heat Treated Ti2AlNb-Based Alloy, Mater. Sci. Eng. A, 2021, 817, p 141345

    Article  CAS  Google Scholar 

  64. Z. Bu, Y. Zhang, L. Yang, J. Kang, and J. Li, Effect of Cooling Rate on Phase Transformation in Ti2AlNb Alloy, J. Alloys Compd., 2022, 893, p 162364

    Article  CAS  Google Scholar 

  65. H. Zhang, C. Li, Z. Ma, Y. Huang, L. Yu, and Y. Liu, Static Coarsening Behavior of a Pre-deformed Ti2AlNb-Based Alloy During Heat Treatment, Vacuum, 2019, 169, p 108934

    Article  CAS  Google Scholar 

  66. X. Chen, W. Zeng, W. Wang, X. Liang, and J. Zhang, Coarsening Behavior of Lamellar Orthorhombic Phase and its Effect on Tensile Properties for the Ti-22Al-25Nb Alloy, Mater. Sci. Eng. A, 2014, 611, p 320–325

    Article  CAS  Google Scholar 

  67. G. Wang, J. Yang, and X. Jiao, Microstructure and Mechanical Properties of Ti-22Al-25Nb Alloy Fabricated by Elemental Powder Metallurgy, Mater. Sci. Eng. A, 2016, 654, p 69–76

    Article  CAS  Google Scholar 

  68. Y. Wang, K. Zhang, and B. Li, Microstructure and High Temperature Tensile Properties of Ti22Al25Nb Alloy Prepared by Reactive Sintering with Element Powders, Mater. Sci. Eng. A, 2014, 608, p 229–233

    Article  CAS  Google Scholar 

  69. Z. Yang, H. Liu, Z. Cui, H. Zhang, and F. Chen, Refinement Mechanism of Centimeter-Grade Coarse Grains in As-Cast Ti2AlNb-Based Alloy During Multi-directional Forging, Mater. Des., 2023, 225, p 111508

    Article  CAS  Google Scholar 

  70. C. Boehlert, The Effects of Forging and Rolling on Microstructure in O + BCC Ti-Al-Nb Alloys, Mater. Sci. Eng. A, 2000, 279(1/2), p 279

    Google Scholar 

  71. D. Miracle and O. Senkov, A Critical Review of High Entropy Alloys and Related Concepts, Acta Materialia, 2017, 122, p 448–511

    Article  CAS  Google Scholar 

  72. X. Sauvage, G. Wilde, S. Divinski, Z. Horita, and R. Valiev, Grain Boundaries in Ultrafine Grained Materials Processed by Severe Plastic Deformation and Related Phenomena, Mater. Sci. Eng. A, 2012, 540, p 1–12

    Article  CAS  Google Scholar 

  73. K. Kumar, H. Van Swygenhoven, and S. Suresh, Mechanical Behavior of Nanocrystalline Metals and Alloys, Acta Materialia, 2003, 51(19), p 5743–5774

    Article  CAS  Google Scholar 

  74. R. Valiev and T. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Progress Mater. Sci., 2006, 51(7), p 881–981

    Article  CAS  Google Scholar 

  75. N. Azizi, and R. Mahmudi, Microstructure, Texture, and Mechanical Properties of the Extruded and Multi-directionally Forged Mg-xGd Alloys, Mater. Sci. Eng. A, 2021, 817, p 141385

    Article  CAS  Google Scholar 

  76. Z. Yang, H. Liu, Z. Cui, H. Zhang, and F. Chen, Refinement Mechanism of Centimeter-Grade Coarse Grains in As-Cast Ti2AlNb-Based Alloy During Multi-Directional Forging, Mater. Des., 2023, 225, p 111508

    Article  CAS  Google Scholar 

  77. J. Peng, Y. Mao, S. Li, and X. Sun, Microstructure Controlling by Heat Treatment and Complex Processing for Ti2AlNb Based Alloys, Mater. Sci. Eng. A, 2001, 299(1–2), p 75–80

    Article  Google Scholar 

  78. Y. Wu, C. Yang, C. Koo, and A. Singh, A Study of Texture and Temperature Dependence of Mechanical Properties in Hot Rolled Ti-25Al-xNb Alloys, Mater. Chem. Phys., 2003, 80(1), p 339–347

    Article  CAS  Google Scholar 

  79. S. Semiatin and P. Smith, Microstructural Evolution During Rolling of Ti-22Al-23Nb Sheet, Mater. Sci. Eng. A, 1995, 202(1), p 26–35

    Article  Google Scholar 

  80. S. Dey, S. Suwas, J. Fundenberger, J. Zou, T. Grosdidier, and R. Ray, Evolution of Hot Rolling Texture in β (B2)-Phase of a Two-Phase (O+B2) Titanium-Aluminide Alloy. Mater. Sci. Eng. A, 2008, 483–484(12), p 551–554.

  81. S. Emura, A. Araoka, and M. Hagiwara, B2 Grain Size Refinement and its Effect on Room Temperature Tensile Properties of a Ti-22Al-27Nb Orthorhombic Intermetallic Alloy, Scripta Materialia, 2003, 48(5), p 629–634

    Article  CAS  Google Scholar 

  82. J. Xu, L. He, H. Su, and L. Zhang, Tool Wear Investigation in High-Pressure Jet Coolant Assisted Machining Ti2AlNb Intermetallic Alloys Based on FEM, Int. J. Lightweight Mater. Manuf., 2018, 1(4), p 219–228

    Google Scholar 

  83. L. He, H. Su, J. Xu, and L. Zhang, Study on Dynamic Chip Formation Mechanisms of Ti2AlNb Intermetallic Alloy, Int. J. Adv. Manuf. Technol, 2017, 92, p 4415–4428

    Article  Google Scholar 

  84. F. Nabhani, Wear Mechanisms of Ultra-Hard Cutting Tools Materials, J. Mater. Process. Technol., 2001, 115(3), p 402–412

    Article  CAS  Google Scholar 

  85. D. Zhu, X. Zhang, and H. Ding, Tool Wear Characteristics in Machining of Nickel-Based Superalloys, Int. J. Mach. Tools Manuf., 2013, 64, p 60–77

    Article  Google Scholar 

  86. E. Ezugwu, R. Silva, J. Bonney, and Á. Machado, Evaluation of the Performance of CBN Tools When Turning Ti-6Al-4V Alloy with High Pressure Coolant Supplies, Int. J. Mach. Tools Manuf., 2005, 45(9), p 1009–1014

    Article  Google Scholar 

  87. A. Machado, J. Wallbank, I. Pashby, and E. Ezugwu, Tool Performance and Chip Control when Machining Ti6Al4V and Inconel 901 Using High Pressure Coolant Supply, Mach. Sci. Technol., 1998, 2(1), p 1–12

    Article  CAS  Google Scholar 

  88. M. Habak and J. Lebrun, An Experimental Study of the Effect of High-Pressure Water Jet Assisted Turning (HPWJAT) on the Surface Integrity, Int. J. Mach. Tools Manuf., 2011, 51(9), p 661–669

    Article  Google Scholar 

  89. E. Ezugwu and J. Bonney, Effect of High-Pressure Coolant Supply when Machining Nickel-Base, Inconel 718, Alloy with Coated Carbide Tools, J. Mater. Process. Technol., 2004, 153–154, p 1045–1050

    Article  Google Scholar 

  90. E. Ezugwu and J. Bonney, Finish Machining of Nickel-Base Inconel 718 Alloy with Coated Carbide Tool under Conventional and High-Pressure Coolant Supplies, Tribol. Trans., 2005, 48(1), p 76–81

    Article  CAS  Google Scholar 

  91. M. Bermingham, S. Palanisamy, D. Kent, and M. Dargusch, A Comparison of Cryogenic and High Pressure Emulsion Cooling Technologies on Tool Life and Chip Morphology in Ti-6Al-4V Cutting, J. Mater. Process. Technol., 2012, 212(4), p 752–765

    Article  CAS  Google Scholar 

  92. D. Kramar, P. Krajnik, and J. Kopac, Capability of High Pressure Cooling in the Turning of Surface Hardened Piston Rods, J. Mater. Process. Technol., 2010, 210(2), p 212–218

    Article  CAS  Google Scholar 

  93. A. Hadzley, R. Izamshah, A. Sarah, and M. Fatin, Finite Element Model of Machining with High Pressure Coolant for Ti-6Al-4V Alloy, Procedia Eng., 2013, 53, p 624–631

    Article  CAS  Google Scholar 

  94. J. Kaminski, O. Ljungkrona, R. Crafoord, and S. Lagerberg, Control of Chip Flow Direction in High-Pressure Water Jet-Assisted Orthogonal Tube Turning, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2000, 214(7), p 529–534

    Article  Google Scholar 

  95. M. Calamaz, D. Coupard, and F. Girot, A New Material Model for 2D Numerical Simulation of Serrated Chip Formation when Machining Titanium Alloy Ti-6Al-4V, Int. J. Mach. Tools Manuf., 2008, 48(3), p 275–288

    Article  Google Scholar 

  96. X. Chen, F. **e, T. Ma, W. Li, and X. Wu, Effects of Post-Weld Heat Treatment on Microstructure and Mechanical Properties of Linear Friction Welded Ti2AlNb Alloy, Mater. Des., 2016, 94, p 45–53

    Article  CAS  Google Scholar 

  97. X. Chen, F. **e, T. Ma, W. Li, and X. Wu, Microstructural Evolution and Mechanical Properties of Linear Friction Welded Ti2AlNb Joint During Solution and Aging Treatment, Mater. Sci. Eng. A, 2016, 668, p 125–136

    Article  CAS  Google Scholar 

  98. Y. Chen, K. Zhang, X. Hu, Z. Lei, and L. Ni, Study on Laser Welding of a Ti-22Al-25Nb Alloy: Microstructural Evolution and High Temperature Brittle Behavior, J. Alloys Compd., 2016, 681, p 175–185

    Article  CAS  Google Scholar 

  99. K. Zhang, L. Ni, Z. Lei, Y. Chen, and X. Hu, Microstructure and Tensile Properties of Laser Welded Dissimilar Ti-22Al-27Nb and TA15 Joints, Int. J. Adv. Manuf. Technol., 2016, 87, p 1685–1692

    Article  Google Scholar 

  100. Z. Lei, Z. Dong, Y. Chen, J. Zhang, and R. Zhu, Microstructure and Tensile Properties of Laser Beam Welded Ti-22Al-27Nb Alloys, Mater. Des. (1980–2015), 2013, 46, p 151–156

    Article  CAS  Google Scholar 

  101. L. Tan, Z. Yao, Y. Ning, and H. Guo, Effect of Isothermal Deformation on Microstructure and Properties of Electron Beam Welded Joint of Ti2AlNb/TC11, Mater. Sci. Technol., 2011, 27(9), p 1469–1474

    Article  CAS  Google Scholar 

  102. L. Tan, Z. Yao, T. Wang, and H. Guo, Effect of Post-Weld Heat Treatment on Microstructure and Properties of Electron Beam Welded Joint of Ti2AlNb/TC11, Mater. Sci. Technol., 2011, 27(8), p 1315–1320

    Article  CAS  Google Scholar 

  103. L. Tan, Z. Yao, W. Zhou, H. Guo, and Y. Zhao, Microstructure and Properties of Electron Beam Welded Joint of Ti-22Al-25Nb/TC11, Aerosp. Sci. Technol., 2010, 14(5), p 302–306

    Article  CAS  Google Scholar 

  104. G. Zou, E. **e, H. Bai, A. Wu, Q. Wang, and J. Ren, A Study on Transient Liquid Phase Diffusion Bonding of Ti-22Al-25Nb Alloy, Mater. Sci. Eng. A, 2009, 499(1), p 101–105

    Article  Google Scholar 

  105. Z. Lei, Z. Dong, Y. Chen, L. Huang, and R. Zhu, Microstructure and Mechanical Properties of Laser Welded Ti-22Al-27Nb/TC4 Dissimilar Alloys, Mater. Sci. Eng. A, 2013, 559, p 909–916

    Article  CAS  Google Scholar 

  106. P. Ferro, A. Zambon, and F. Bonollo, Investigation of Electron-Beam Welding in Wrought Inconel 706—Experimental and Numerical Analysis, Mater. Sci. Eng. A, 2005, 392(1), p 94–105

    Article  Google Scholar 

  107. X. Chen, F. **e, T. Ma, W. Li, and X. Wu, Oxidation Behavior of Three Different Zones of Linear Friction Welded Ti2AlNb Alloy, Adv. Eng. Mater., 2016, 18(11), p 1944–1951

    Article  Google Scholar 

  108. S. Wang, J. Liu, and D. Chen, Tensile and Fatigue Properties of Electron Beam Welded Dissimilar Joints Between Ti-6Al-4V and BT9 Titanium Alloys, Mater. Sci. Eng. A, 2013, 584, p 47–56

    Article  CAS  Google Scholar 

  109. J. Sabol, T. Pasang, W. Misiolek, and J. Williams, Localized Tensile Strain Distribution and Metallurgy of Electron Beam Welded Ti-5Al-5V-5Mo-3Cr Titanium Alloys, J. Mater. Process. Technol., 2012, 212(11), p 2380–2385

    Article  CAS  Google Scholar 

  110. H. Niu, Y. Chen, D. Zhang, Y. Zhang, J. Lu, W. Zhang, and P. Zhang, Fabrication of a Powder Metallurgy Ti2AlNb-Based Alloy by Spark Plasma Sintering and Associated Microstructure Optimization, Mater. Des., 2016, 89, p 823–829

    Article  CAS  Google Scholar 

  111. K. Rao, Y. Prasad, and K. Suresh, Hot Working Behavior and Processing Map of a γ-TiAl Alloy Synthesized by Powder Metallurgy, Mater. Des., 2011, 32(10), p 4874–4881

    Article  CAS  Google Scholar 

  112. Y. Wang, J. Lin, X. Xu, Y. He, Y. Wang, and G. Chen, Effect of Fabrication Process on Microstructure of High Nb Containing TiAl Alloy, J. Alloys Compd., 2008, 458(1), p 313–317

    Article  CAS  Google Scholar 

  113. N. Zhang, X. Han, D. Sun, S. Liu, H. Liu, W. Yang, and G. Wu, Microstructure Evolution and Mechanical Properties of LaB6-Modified Ti2AlNb Alloy Fabricated By Blended Elemental Powder Metallurgy, Powder Technol., 2020, 369, p 334–344

    Article  CAS  Google Scholar 

  114. C. Yolton and J. Beckman, Powder Metallurgy Processing and Properties of the Ordered Orthorhombic Alloy Ti-22at.%Al-23at.%Nb, Mater. Sci. Eng. A, 1995, 192, p 597–603

    Article  Google Scholar 

  115. N. Zhang, D. Sun, X. Han, Z. Wang, H. Liu, Z. Wang, W. Yang, and G. Wu, Effect of Spark Plasma Sintering Temperatures on Microstructure and Mechanical Properties of In-Situ (La2O3+TiB)/Ti2AlNb Composites with a Tailored Three-Dimensional Network Architecture, Mater. Sci. Eng. A, 2020, 772, p 138769

    Article  CAS  Google Scholar 

  116. J. Wu, R. Guo, L. Xu, Z. Lu, Y. Cui, and R. Yang, Effect of Hot Isostatic Pressing Loading Route on Microstructure and Mechanical Properties of Powder Metallurgy Ti2AlNb Alloys, J. Mater. Sci. Technol., 2017, 33(2), p 172–178

    Article  CAS  Google Scholar 

  117. K. Sim, G. Wang, R. Son, and S. Choe, Influence of Mechanical Alloying on the Microstructure and Mechanical Properties of Powder Metallurgy Ti2AlNb-Based Alloy, Powder Technol., 2017, 317, p 133–141

    Article  CAS  Google Scholar 

  118. K. Sim, G. Wang, Y. Li, and J. Jong, Enhanced Ductility of a Bimodal Grain Structure Ti-22Al-25Nb Alloy Fabricated by Spark Plasma Sintering, Adv. Eng. Mater., 2017, 19(6), p 1600804

    Article  Google Scholar 

  119. Y. Wang, Z. Lu, K. Zhang, and D. Zhang, Thermal Mechanical Processing Effects on Microstructure Evolution and Mechanical Properties of the Sintered Ti-22Al-25Nb Alloy, Materials, 2016, 9(3), p 189

    Article  PubMed  PubMed Central  Google Scholar 

  120. B. Shao, S. Wan, W. Xu, D. Shan, B. Guo, and Y. Zong, Formation Mechanism of an α2 Phase-Rich Layer on the Surface of Ti-22Al-25Nb Alloy, Mater. Charact., 2018, 145, p 205–209

    Article  CAS  Google Scholar 

  121. M. Yan, M. Dargusch, T. Ebel, and M. Qian, A Transmission Electron Microscopy and Three-Dimensional Atom Probe Study of the Oxygen-Induced Fine Microstructural Features in As-Sintered Ti-6Al-4V and Their Impacts on Ductility, Acta Materialia, 2014, 68, p 196–206

    Article  CAS  Google Scholar 

  122. C. Rhodes, P. Smith, W. Hanusiak, and M. Shepard, Microstructural Evolution in Wire-Drawn Ti-22Al-26Nb Powder, Metall. Mater. Trans. A, 2000, 31(11), p 2931–2941

    Article  Google Scholar 

  123. M. Yan, W. Xu, M.S. Dargusch, H.P. Tang, M. Brandt, and M. Qian, Review of Effect of Oxygen on Room Temperature Ductility of Titanium and Titanium Alloys, Powder Metall., 2014, 57(4), p 251–257

    Article  CAS  Google Scholar 

  124. J. Lou, B. Gabbitas, F. Yang, S. Raynova, and H. Lu, Effects of LaB6 Additions on the Microstructure and Mechanical Properties of a Sintered and Hot Worked P/M Ti Alloy, J. Alloys Compd., 2016, 674, p 116–124

    Article  CAS  Google Scholar 

  125. A. Kartavykh, E. Asnis, N. Piskun, I. Statkevich, M. Gorshenkov, and V. Tcherdyntsev, Lanthanum Hexaboride as Advanced Structural Refiner/Getter in TiAl-Based Refractory Intermetallics, J. Alloys Compd., 2014, 588, p 122–126

    Article  CAS  Google Scholar 

  126. M. Yan, Y. Liu, G. Schaffer, and M. Qian, In Situ Synchrotron Radiation to Understand the Pathways for the Scavenging of Oxygen in Commercially Pure Ti and Ti-6Al-4V by Yttrium Hydride, Scripta Materialia, 2013, 68(1), p 63–66

    Article  CAS  Google Scholar 

  127. Y. Yang, S. Luo, and M. Qian, The Effect of Lanthanum Boride on the Sintering, Sintered Microstructure and Mechanical Properties of Titanium and Titanium Alloys, Mater. Sci. Eng. A, 2014, 618, p 447–455

    Article  CAS  Google Scholar 

  128. J. Jia, K. Zhang, and S. Jiang, Microstructure and Mechanical Properties of Ti-22Al-25Nb Alloy Fabricated by Vacuum Hot Pressing Sintering, Mater. Sci. Eng. A, 2014, 616, p 93–98

    Article  CAS  Google Scholar 

  129. J. Groza and A. Zavaliangos, Sintering Activation by External Electrical Field, Mater. Sci. Eng. A, 2000, 287(2), p 171–177

    Article  Google Scholar 

  130. J. Wu, L. Xu, Z. Lu, B. Lu, Y. Cui, and R. Yang, Microstructure Design and Heat Response of Powder Metallurgy Ti2AlNb Alloys, J. Mater. Sci. Technol., 2015, 31(12), p 1251–1257

    Article  Google Scholar 

  131. I. Polozov, K. Starikov, A. Popovich, and V. Sufiiarov, Mitigating Inhomogeneity and Tailoring the Microstructure of Selective Laser Melted Titanium Orthorhombic Alloy by Heat Treatment, Hot Isostatic Pressing, and Multiple Laser Exposures, Materials, 2021, 14, p 4946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. I. Polozov, V. Sufiiarov, K. Starikov, and A. Popovich, In Situ Synthesized Ti2AlNb-Based Composites Produced by Selective Laser Melting by Addition of SiC-Whiskers, Mater. Lett., 2021, 297, p 129956

    Article  CAS  Google Scholar 

  133. J. Pragana, R. Sampaio, I. Bragança, C. Silva, and P. Martins, Hybrid Metal Additive Manufacturing: A State-of-the-Art Review, Adv. Ind. Manuf. Eng., 2021, 2, p 100032

    Google Scholar 

  134. I. Polozov, K. Starikov, A. Popovich, and V. Sufiiarov, Mitigating Inhomogeneity and Tailoring the Microstructure of Selective Laser Melted Titanium Orthorhombic Alloy by Heat Treatment, Hot Isostatic Pressing, and Multiple Laser Exposures, Materials, 2021, 14(17), p 4946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. S. Yang, S. Nam, and M. Hagiwara, Investigation of Creep Deformation Mechanisms and Environmental Effects on Creep Resistance in a Ti2AlNb Based Intermetallic Alloy, Intermetallics, 2004, 12(3), p 261–274

    Article  CAS  Google Scholar 

  136. K. Miyoshi, B. Lerch, and S. Draper, Fretting Wear of Ti-48Al-2Cr-2Nb, Tribol. Int., 2003, 36(2), p 145–153

    Article  CAS  Google Scholar 

  137. X. Liu, Z. Xu, W. Xu, W. Liang, C. Guo, and W. Tian, Plasma Surface Alloying with Molybdenum and Carburization of TiAl Based Alloys, Trans. Nonferrous Met. Soc. China, 2005, 15(3), p 420–424

    CAS  Google Scholar 

  138. H. Wu, P. Zhang, J. Li, S. Ma, and Z. Xu, Microstructure and Tribological Properties of Surface Plasma Chromising Layer of Ti2AlNb-Based Alloy, Trans. Nonferrous Met. Soc. China, 2007, 17(10), p 1656–1660

    CAS  Google Scholar 

  139. A. Srivastava and K. Das, Microstructure and Abrasive Wear Study of (Ti, W)C-Reinforced High-Manganese Austenitic Steel Matrix Composite, Mater. Lett., 2008, 62(24), p 3947–3950

    Article  CAS  Google Scholar 

  140. H. Wu and P. Zhang, Effect of W Substitution on Electronic Structures and Properties of Ti2AlNb-Based Alloy, Rare Metal Mater. Eng., 2007, 36(5), p 846–848

    CAS  Google Scholar 

  141. T. Solzak and A. Polycarpou, Tribology of WC/C Coatings for Use in Oil-Less Piston-Type Compressors, Surf. Coat. Technol., 2006, 201(7), p 4260–4265

    Article  CAS  Google Scholar 

  142. Y. Zhang, Y. Liu, L. Yu, H. Liang, Y. Huang, and Z. Ma, Microstructures and Tensile Properties of Ti2AlNb and Mo-Modified Ti2AlNb Alloys Fabricated by Hot Isostatic Pressing, Mater. Sci. Eng. A, 2020, 776, p 139043

    Article  CAS  Google Scholar 

  143. S. Li and Y. Mao, Effect of Microstructure on Tensile Properties and Fracture Behavior of Intermetallic Ti2AlNb Alloys, Trans. Nonferrous Met. Soc. China, 2002, 12(4), p 582–586

    CAS  Google Scholar 

  144. Y. Fu, M. Lv, Q. Zhao, H. Zhang, and Z. Cui, Investigation on the Size and Distribution Effects of O Phase on Fracture Properties of Ti2AlNb Superalloy by Using Image-Based Crystal Plasticity Modeling, Mater. Sci. Eng. A, 2021, 805, p 140787

    Article  CAS  Google Scholar 

  145. Y. Fu and Z. Cui, Effects of Plastic Deformation and Aging Treatment on Phase Precipitation in Ti2AlNb Alloy, J. Mater. Eng. Perform., 2022, 31(4), p 2633–2643

    Article  CAS  Google Scholar 

  146. C. Boehlert, Part III. The Tensile Behavior of Ti-Al-Nb O+bcc Orthorhombic Alloys, Metall. Mater. Trans. A, 2001, 32(8), p 1977–1988

    Article  Google Scholar 

  147. J. Zhang, H. Zhang, X. Zhang, X. Liang, Y. Cheng, and S. Li, Control of Duplex-Microstructure and Its Effect on Mechanical Properties of Ti-23Al-17Nb Alloys, Rare Metal Mater. Eng., 2010, 39(2), p 372–376

    CAS  Google Scholar 

  148. C. Oskay, Z. Su, and B. Kapusuzoglu, Discrete Eigenseparation-Based Reduced Order Homogenization Method for Failure Modeling of Composite Materials, Comput. Methods Appl. Mech. Eng., 2020, 359, p 112656

    Article  Google Scholar 

  149. S. Kamat, A. Gogia, and D. Banerjee, Effect of alloying elements and heat treatment on the fracture toughness of Ti-Al-Nb alloys, Acta Materialia, 1998, 46(1), p 239–251

    Article  CAS  Google Scholar 

  150. Z. Shi, H. Guo, J. Zhang, and J. Yin, Microstructure−Fracture Toughness Relationships and Toughening Mechanism of TC21 Titanium Alloy with Lamellar Microstructure, Trans. Nonferrous Met. Soc. China, 2018, 28(12), p 2440–2448

    Article  CAS  Google Scholar 

  151. M. Keller, P. Jones, W. Porter, D. Eylon, Effects of processing variables on the creep behavior of investment cast Ti-48Al-2Nb-2Cr. United States: Minerals, Metals and Materials Society, Warrendale, PA (United States), United States, 1995.

  152. C. Boehlert and D. Miracle, Part II. The Creep Behavior of Ti-Al-Nb O + Bcc orthorhombic alloys, Metall. Mater. Trans. A, 1999, 30(9), p 2349–2367

    Article  Google Scholar 

  153. Y. He, R. Hu, W. Luo, T. He, Y. Lai, Y. Du, and X. Liu, Microstructural Evolution and Creep Deformation Behavior of Novel Ti−22Al−25Nb−1Mo−1V−1Zr−02Si (at.%) Orthorhombic Alloy, Trans. Nonferrous Met. Soc. China, 2019, 29(2), p 313–321

    Article  CAS  Google Scholar 

  154. R. Boyer, G. Welsch, and E. Collings, Materials Properties Handbook-Titanium Alloys, ASM International, 1994.

    Google Scholar 

  155. P. Singh, B. Singh, C. Ramachandra, and V. Singh, Room Temperature Low Cycle Fatigue Behaviour of Titanium Aluminide Ti-26.2Al-15.2Nb-0.4Mo, Scripta Materialia, 1996, 34(11), p 1791–1796

    Article  CAS  Google Scholar 

  156. Y. Chen, J. Wang, Y. Gao, and A. Feng, Effect of Shot Peening on Fatigue Performance of Ti2AlNb Intermetallic Alloy, Int. J. Fatigue, 2019, 127, p 53–57

    Article  CAS  Google Scholar 

  157. Z. Yang, W. Liang, Q. Miao, B. Chen, Z. Ding, and N. Roy, Oxidation Behavior of Al/Cr Coating on Ti2AlNb Alloy at 900 °C, Mater. Res. Express, 2018, 5(4), p 046408

    Article  Google Scholar 

Download references

Acknowledgment

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqi Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Su, Z. Elemental Composition, Phase Diagram, Microstructure, Fabrication Processes, and Mechanical Properties of Ti2AlNb Alloy: A Review. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09801-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09801-z

Keywords

Navigation