Log in

Microstructural and Mechanical Properties of X80 Girth-Welded Joints under Different High-Arc-Energy Welding Conditions

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

High-arc-energy welding undoubtedly increases the tendency for both local softening and embrittlement to occur in the coarse-grained heat-affected zone (CGHAZ) of line pipe girth-welded joints. In this paper, the CGHAZs of X80 welded joints with series of arc energies of 20.3 kJ/cm, 29.9 kJ/cm and 40.2 kJ/cm were prepared by automatic submerged arc welding (SAW), and the correlations between the microstructural evolution and mechanical properties, i.e., strength, hardness and impact toughness, were systematically investigated. The results showed that the microstructure of the CGHAZ was composed of lath bainite and granular bainite (GB), the arc energy increased from 20 to 40 kJ/cm, the area fraction of the GB increased from 17.3 to 37.4%, the grain size increased from 39.8 to 79.0 μm, and the high-area fraction of the GB decreased the number fractions of high-angle grain boundaries (HAGBs). In addition, the M-A constituents obviously coarsened as the arc energy increased, the proportion of island M-A constituents decreased from 85.2 to 76.2%, and the amounts of massive M-A constituents increased from 0.4 to 15.9%. The mechanical properties showed that obvious softening and embrittlement occurred in the CGHAZ, the joint strength decreased from 708 to 602.5 MPa, and the impact energy decreased from 218 to 92 J. The significant increases in the grain size and area fraction of the GB were the fundamental reasons for the softening of the joint at high arc energy, while the significant decrease in the number fraction of the HAGB and the substantial increase in the content of coarse-stringer and massive M-A constituents seriously deteriorated the impact toughness of the CGHAZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. C. Wang, X. Di, L. Dai, S. Li, H. Zhao, J. Wang, C. Deng, S. Cui, and C. Li, Effect of Strain Aging on Mechanical Properties and Engineering Critical Assessment of X80 Girth Weld Metal, Int. J. Pres. Ves. Pip., 2023, 206, 105071.

    Article  CAS  Google Scholar 

  2. Y. Jiang, C. Li, D. Wang, J. Liu, Y. Li, and X. Di, The Mutual Effect of Hydrogen and Cyclic Plastic Deformation on Ductility Degradation of X65 Reeled-Pipeline Welded Joint, Mater. Sci. Eng. A, 2020, 791, 139739.

    Article  CAS  Google Scholar 

  3. L. Zhu, J. Luo, H. Jia, L. Li, W. Yu, and Y. Chen, Effect of Deviation of Welding Parameters on Mechanical Properties of X80 Steel Girth Weld, J. Mater. Res. Technol., 2023, 22, p 3311–3318.

    Article  CAS  Google Scholar 

  4. F. **a, Z. Li, M. Ma, Y. Zhao, C. Wu, X. Su, and H. Peng, Effect of Nb on Microstructure and Corrosion Resistance of X80 Pipeline Steel, Int. J. Pres. Ves. Pip., 2023, 203, 104949.

    Article  CAS  Google Scholar 

  5. H. Aydin and T.W. Nelson, Microstructure and Mechanical Properties of Hard Zone in Friction Stir Welded X80 Pipeline Steel Relative to Different Heat Input, Mater. Sci. Eng. A, 2013, 586, p 313–322.

    Article  CAS  Google Scholar 

  6. P. Wang, J. Zhi, W. Hao, J. **e, F. Wang, and C. Huo, Room Temperature Creep Behaviors of Base Metal and Welding Materials for X80 Pipeline Steel, Mater. Sci. Eng. A, 2022, 856, 144038.

    Article  CAS  Google Scholar 

  7. L. Dong, Y. Qiu, Q. Song, and Y. Gu, Effect of Direct Current on Hydrogen Permeation Behavior of X80 Pipeline Steel in Shanghai Soil Solution, Eng. Fail. Anal., 2023, 150, 107292.

    Article  Google Scholar 

  8. W. Cheng, B. Song, and J. Mao, Effect of Ce Content on the Hydrogen Induced Cracking of X80 Pipeline Steel, Int. J. Hydrog. Energy, 2023, 48(40), p 15303–15316.

    Article  CAS  Google Scholar 

  9. J. Gou, X. **ng, G. Cui, Z. Li, J. Liu, X. Deng, and Y.F. Cheng, Effect of Hydrogen on Impact Fracture of X80 Steel Weld: Various Heat Inputs and Coarse Grain Heat-Affected Zone, Mater. Sci. Eng. A, 2023, 886, 145673.

    Article  CAS  Google Scholar 

  10. X. Qi, P. Huan, X. Wang, Z. Liu, X. Shen, Y. Gao, and H. Di, Effect of Root Welding Heat Input on Microstructure Evolution and Fracture Mechanism in Intercritically Reheat-Coarse Grained Heat-Affected Zone of X80 Pipeline Steel, Mater. Today. Commun., 2022, 31, 103413.

    Article  CAS  Google Scholar 

  11. M. Tong, X. Di, C. Li, and D. Wang, Toughening Mechanism of Inter-Critical Heat-Affected Zone in a 690 MPa Grade Rack Plate Steel, Mater Charact, 2018, 144, p 631–640.

    Article  CAS  Google Scholar 

  12. X. Yang, X. Di, X. Liu, D. Wang, and C.N. Li, Effects of Heat Input on Microstructure and Fracture Toughness of Simulated Coarse-Grained Heat Affected Zone for HSLA Steels, Mater Charact, 2019, 155, 109818.

    Article  CAS  Google Scholar 

  13. T. Vuherer, Dunđer, Marko, Milović, Ljubica, Zrilić, Milorad, Samardžić, Microstructural Investigation of the Heat-Affected Zone of Simulated Welded Joint of P91 Steel, Metalurgija, 2013, 52(3), p 317–320.

    CAS  Google Scholar 

  14. C. Pandey, M.M. Mahapatra, P. Kumar, and A. Giri, International, Microstructure Characterization and Charpy Toughness of P91 Weldment for As-welded, Post-weld Heat Treatment and Normalizing & Tempering Heat Treatment, Met. Mater. Int., 2017, 23(5), p 900–914.

    Article  CAS  Google Scholar 

  15. K.S. Arora, S.R. Pandu, N. Shajan, P. Pathak, and M. Shome, Microstructure and Impact Toughness of Reheated Coarse Grain Heat Affected Zones of API X65 and API X80 Linepipe Steels, Int. J. Pres. Ves. Pip., 2018, 163, p 36–44.

    Article  CAS  Google Scholar 

  16. N. Huda, Y. Wang, L. Li, and A.P. Gerlich, Effect of Martensite-Austenite (MA) Distribution on Mechanical Properties of Inter-Critical Reheated Coarse Grain Heat Affected Zone in X80 Linepipe Steel, Mater. Sci. Eng. A, 2019, 765, 138301.

    Article  CAS  Google Scholar 

  17. J.H. Chen, Y. Kikuta, T. Araki, M. Yoneda, and Y. Matsuda, Micro-fracture Behaviour Induced by M-A Constituent (Island Martensite) in Simulated Welding Heat Affected Zone of HT80 High Strength Low Alloyed Steel, Acta Metall., 1984, 32(10), p 1779–1788.

    Article  CAS  Google Scholar 

  18. X. Luo, X. Chen, T. Wang, S. Pan, and Z.D. Wang, Effect of Morphologies of Martensite–Austenite Constituents on Impact Toughness in Intercritically Reheated Coarse-Grained Heat-Affected Zone of HSLA Steel, Mater. Sci. Eng. A, 2017, 710, p 192–199.

    Article  Google Scholar 

  19. P. Mohseni, J.K. Solberg, M. Karlsen, O.M. Akselsen, and E. Østby, Investigation of Mechanism of Cleavage Fracture Initiation in Intercritically Coarse Grained Heat Affected Zone of HSLA Steel, Mater. Sci. Technol., 2012, 28, p 1261–1268.

    Article  CAS  Google Scholar 

  20. L. Lan, C. Qiu, D. Zhao, X. Gao, and L.X. Du, Microstructural Characteristics and Toughness of the Simulated Coarse Grained Heat Affected Zone of High Strength Low Carbon Bainitic Steel, Mater. Sci. Eng. A, 2011, 529, p 192–200.

    Article  CAS  Google Scholar 

  21. Y. Zhou, S. Chen, X. Chen, T. Cui, J. Liang, and C. Liu, The Evolution of Bainite and Mechanical Properties of Direct Laser Deposition 12CrNi2 Alloy Steel at Different Laser Power, Mater. Sci. Eng. A, 2019, 742, p 150–161.

    Article  CAS  Google Scholar 

  22. A.M. Ravi, J. Sietsma, and M.J. Santofimia, Bainite Formation Kinetics in Steels and the Dynamic Nature of the Autocatalytic Nucleation Process, Scr. Mater., 2017, 140, p 82–86.

    Article  CAS  Google Scholar 

  23. A.M. Ravi, J. Sietsma, and M.J. Santofimia, Exploring Bainite Formation Kinetics Distinguishing Grain-Boundary and Autocatalytic Nucleation in High and Low-Si Steels, Acta Mater., 2016, 105, p 155–164.

    Article  CAS  Google Scholar 

  24. H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, Crystallographic Features of Lath Martensite in Low-Carbon Steel, Acta Mater., 2006, 54, p 1279–1288.

    Article  CAS  Google Scholar 

  25. K. Shi, H. Hou, J.B. Chen, L.T. Kong, H.Q. Zhang, and J.F. Li, Effect of Bainitic Packet Size Distribution on Impact Toughness and its Scattering in the Ductile-Brittle Transition Temperature Region of Q&T Mn-Ni-Mo Bainitic Steels, Steel Res. Int., 2016, 87(2), p 165–172.

    Article  CAS  Google Scholar 

  26. C. Wang, M. Wang, J. Shi, W. Hui, and H. Dong, Effect of Microstructural Refinement on the Toughness of Low Carbon Martensitic Steel, Scr. Mater., 2008, 58(6), p 492–495.

    Article  CAS  Google Scholar 

  27. A. Lambert-Perlade, A.F. Gourgues, and A. Pineau, Austenite to Bainite Phase Transformation in the Heat-Affected Zone of a High Strength Low Alloy Steel, Acta Mater., 2004, 52(8), p 2337–2348.

    Article  CAS  Google Scholar 

  28. Y. Shi and Z. Han, Effect of Weld Thermal Cycle on Microstructure and Fracture Toughness of Simulated Heat-Affected Zone for a 800MPa Grade High Strength Low Alloy Steel, J. Mater. Process. Tech., 2008, 207(1–3), p 30–39.

    Article  CAS  Google Scholar 

  29. A.S. Kumar, B.R. Kumar, G.L. Datta, and V.R. Ranganath, Effect of Microstructure and Grain Size on the Fracture Toughness of a Micro-alloyed Steel, Mater. Sci. Eng. A, 2010, 527(4–5), p 954–960.

    Article  Google Scholar 

  30. Y. Zou, Y.B. Xu, Z.P. Hu, S.Q. Chen, D.T. Han, R.D.K. Misra, and G.Z. Wang, High Strength-Toughness Combination of a Low-Carbon Medium-Manganese Steel Plate with Laminated Microstructure and Retained Austenite, Mater. Sci. Eng. A, 2017, 707, p 270–279.

    Article  CAS  Google Scholar 

  31. J. Hu, L.X. Du, G.S. Sun, H. **e, and R.D.K. Misra, The Determining Role of Reversed Austenite in Enhancing Toughness of a Novel Ultra-Low Carbon Medium Manganese High Strength Steel, Scr. Mater., 2015, 104, p 87–90.

    Article  CAS  Google Scholar 

  32. X. Yang, X. Di, J. Wang, C. Fang, W. Fu, L. Ba, X. Zhou, C. Zhang, and C. Li, The Co-precipitation Evolution of NiAl and Cu Nanoparticles and its Influence on Strengthening and Toughening Mechanisms in Low-Carbon Ultra-High Strength Martensite Seamless Tube Steel, Int. J. Plast., 2023, 166, 103654.

    Article  CAS  Google Scholar 

  33. J. Hu, X. Li, Q. Meng, L. Wang, Y. Li, and W. Xu, Tailoring Retained Austenite and Mechanical Property Improvement in Al–Si–V containing Medium Mn Steel via Direct Intercritical Rolling, Mater. Sci. Eng. A, 2022, 855, 143904.

    Article  CAS  Google Scholar 

  34. B.L. Ennis, E. Jimenez-Melero, E.H. Atzema, M. Krugla, M.A. Azeem, D. Rowley, D. Daisenberger, D.N. Hanlon, and P.D. Lee, Metastable Austenite Driven Work-Hardening Behaviour in a TRIP-Assisted Dual Phase Steel, Int. J. Plast., 2017, 88, p 126–139.

    Article  CAS  Google Scholar 

  35. S.G. Lee, S.S. Sohn, B. Kim, W.G. Kim, K.K. Um, and S. Lee, Effects of Martensite-Austenite Constituent on Crack Initiation and Propagation in Inter-Critical Heat-Affected Zone of High-Strength Low-Alloy (HSLA) Steel, Mater. Sci. Eng. A, 2018, 715, p 332–339.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (grant no. 52074191).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **njie Di.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Yang, X., Li, C. et al. Microstructural and Mechanical Properties of X80 Girth-Welded Joints under Different High-Arc-Energy Welding Conditions. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09795-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09795-8

Keywords

Navigation