Log in

Effects of the Ultrasonic Surface Rolling Process on the Surface Integrity, Wear Resistance, and Corrosion Resistance of 4Cr5MoSiV1 Tool Steel Before and After Quenching

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Quenched 4Cr5MoSiV1 tool steel is commonly used as a material for tablet presser dies. However, it exhibits high sensitivity to temperature and working environment, resulting in issues such as thermal cracking tendencies, uneven hardness distribution, and poor oxidation resistance during machining and heat treatment. The ultrasonic surface rolling process (USRP) can improve the surface integrity by introducing residual compressive stresses in the subsurface of the workpiece, which can effectively suppress the initiation and propagation of fatigue cracks and enhance the material's fatigue strength and lifespan. In this study, the influence of USRP on the surface integrity, wear resistance, and corrosion resistance of 4Cr5MoSiV1 tablet dies before and after quenching was investigated. Experimental results revealed that, under specific rolling parameters, USRP can significantly affect surface roughness and the morphology of the 4Cr5MoSiV1 tablet dies both before and after quenching. By USRP, the surface layer hardness of the unquenched samples increases by 41%, while the quenched samples increases only 14%. The residual compressive stress in the surface layer of the quenched sample increases from 42 to 67 MPa, while for the unquenched sample, the stress state of the surface transitioned from tensile stress to compressive stress, with an increase of approximately 140 MPa. Both USRP and quenching treatment can enhance the wear resistance and corrosion resistance of 4Cr5MoSiV1 tool steel. For the 4Cr5MoSiV1 tablet die, USRP can serve as a surface strength enhancement and finishing technique to replace quenching treatment. Unquenched-USRP-treated 4Cr5MoSiV1 tool steel can be used as die material for tablet pressers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. J. Ajaja, W. Jomaa, P. Bocher, R.R. Chromik, and M. Brochu, High Cycle Fatigue Behavior of Hard Turned 300 M Ultra-High Strength Steel, Int. J. Fatigue, 2019, 131, p105380. https://doi.org/10.1016/j.ijfatigue.2019.105380

    Article  CAS  Google Scholar 

  2. B.X. Wang, F. Qiu, G. Barber, Y.M. Pan, W.W. Cui, and R. Wang, Microstructure, Wear Behavior and Surface Hardening of Austempered Ductile Iron, J. Market. Res., 2020, 9(5), p 9838–9855. https://doi.org/10.1016/j.jmrt.2020.06.076

    Article  CAS  Google Scholar 

  3. Y. Meng, J.X. Deng, J.X. Wu, R. Wang, and Y. Lu, Improved Interfacial Adhesion of AlTiN Coating by Micro-Grooves Using Ultrasonic Surface Rolling Processing, J. Mater. Process. Technol., 2022, 304, p117570. https://doi.org/10.1016/j.jmatprotec.2022.117570

    Article  CAS  Google Scholar 

  4. C.S. Liu, D.X. Liu, X.H. Zhang, G.Y. He, X.C. Xu, N. Ao, A. Ma, and D. Liu, On the Influence of Ultrasonic Surface Rolling Process on Surface Integrity and Fatigue Performance of Ti-6Al-4V Alloy, Surf. Coat. Technol., 2019, 370, p 24–34. https://doi.org/10.1016/j.surfcoat.2019.04.080

    Article  CAS  Google Scholar 

  5. J.C. Kim, S.K. Cheong, and H. Noguchi, Evolution of Residual Stress Redistribution Associated with Localized Surface Microcracking in Shot-Peened Medium-Carbon Steel During Fatigue Test, Int. J. Fatigue, 2013, 55, p 147–157. https://doi.org/10.1016/j.ijfatigue.2013.06.010

    Article  CAS  Google Scholar 

  6. R. Kataria, J. Kumar, and B.S. Pabla, Experimental Investigation and Optimization of Machining Characteristics in Ultrasonic Machining of WC-Co Composite Using GRA Method, Mater. Manuf. Processes, 2016, 31(5), p 685–693. https://doi.org/10.1080/10426914.2015.1037910

    Article  CAS  Google Scholar 

  7. J.Q. Dang, H. Zhang, Q.L. An, G.H. Lian, Y.G. Li, H.W. Wang, and M. Chen, Surface Integrity and Wear Behavior of 300M Steel Subjected to Ultrasonic Surface Rolling Process, Surf. Coat. Technol., 2021, 421, p127380. https://doi.org/10.1016/j.surfcoat.2021.127380

    Article  CAS  Google Scholar 

  8. D. Liu, D.X. Liu, X.H. Zhang, C.S. Liu, A. Ma, X.C. Xu, and W.C. Zhang, An Investigation of Fretting Fatigue Behavior and Mechanism in 17-4PH Stainless Steel with Gradient Structure Produced by an Ultrasonic Surface Rolling Process, Int. J. Fatigue, 2020, 131, p105340. https://doi.org/10.1016/j.ijfatigue.2019.105340

    Article  CAS  Google Scholar 

  9. T. Wang, D.P. Wang, G. Liu, B.M. Gong, and N.X. Song, Investigations on the Nanocrystallization of 40Cr Using Ultrasonic Surface Rolling Processing, Appl. Surf. Sci., 2008, 255(5), p 1824–1829. https://doi.org/10.1016/j.apsusc.2008.06.034

    Article  CAS  Google Scholar 

  10. X.J. Cao, Y.S. Pyoun, and R. Murakami, Fatigue Properties of a S45C Steel Subjected to Ultrasonic Nanocrystal Surface Modification, Appl. Surf. Sci., 2010, 256(21), p 6297–6303. https://doi.org/10.1016/j.apsusc.2010.04.007

    Article  CAS  Google Scholar 

  11. B. Wu, J.X. Zhang, L.J. Zhang, Y.S. Pyoun, and R.I. Murakami, Effect of Ultrasonic Nanocrystal Surface Modification on Surface and Fatigue Properties of Quenching and Tempering S45C Steel, Appl. Surf. Sci., 2014, 321, p 318–330. https://doi.org/10.1016/j.apsusc.2014.09.068

    Article  CAS  Google Scholar 

  12. J.T. Wang, S.G. Qu, F.Q. Lai, Y.Q. Deng, and X.Q. Li, Effect of Ultrasonic Surface Rolling on Microstructural Evolution and Fretting Wear Resistance of 20CrMoH Steel Under Different Quenching Temperatures, Mater. Chem. Phys., 2022, 288, p126362. https://doi.org/10.1016/j.matchemphys.2022.126362

    Article  CAS  Google Scholar 

  13. J. Barry and G. Byrne, TEM Study on the Surface White Layer in Two Turned Hardened Steels, Mater. Sci. Eng. A, 2002, 325(1–2), p 356–364. https://doi.org/10.1016/S0921-5093(01)01447-2

    Article  Google Scholar 

  14. Y. Zhou, J.F. Peng, Z.P. Luo, B.B. Cao, X.S. **, and M.H. Zhu, Phase and Microstructural Evolution in White Etching Layer of a Pearlitic Steel During Rolling–Sliding Friction, Wear, 2016, 362, p 8–17. https://doi.org/10.1016/j.wear.2016.05.007

    Article  CAS  Google Scholar 

  15. H. Nykyforchyn, V. Kyryliv, O. Maksymiv, Z. Slobodyan, and O. Tsyrulnyk, Formation of Surface Corrosion-Resistant Nanocrystalline Structures on Steel, Nanoscale Res. Lett., 2016, 11, p 1–6. https://doi.org/10.1186/s11671-016-1266-3

    Article  CAS  Google Scholar 

  16. H. Nykyforchyn, V. Kyryliv, and O. Maksymiv, Wear Resistance of Steels with Surface Nanocrystalline Structure Generated by Mechanical-Pulse Treatment, Nanoscale Res. Lett., 2017, 12, p 1–5. https://doi.org/10.1186/s11671-017-1917-z

    Article  CAS  Google Scholar 

  17. D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, A. Lamikiz, G.I. Prokopenko, K.E. Grinkevych, and I.V. Tkachenko, Laser-Hardened and Ultrasonically Peened Surface Layers on Tool Steel AISI D2: Correlation of the Bearing Curves’ Parameters, Hardness and Wear, J. Mater. Eng. Perform., 2018, 27, p 764–776. https://doi.org/10.1007/s11665-017-3107-7

    Article  CAS  Google Scholar 

  18. D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, A. Lamikiz, G.I. Prokopenko, M.O. Iefimov, and K.E. Grinkevych, Combining Laser Transformation Hardening and Ultrasonic Impact Strain Hardening for Enhanced Wear Resistance of AISI 1045 Steel, Wear, 2020, 462, 203494. https://doi.org/10.1016/j.wear.2020.203494

    Article  CAS  Google Scholar 

  19. D.A. Lesyk, B.N. Mordyuk, S. Martinez, M.O. Iefimov, V.V. Dzhemelinskyi, and A. Lamikiz, Influence of Combined Laser Heat Treatment and Ultrasonic Impact Treatment on Microstructure and Corrosion Behavior of AISI 1045 Steel, Surf. Coat. Technol., 2020, 401, p126275. https://doi.org/10.1016/j.surfcoat.2020.126275

    Article  CAS  Google Scholar 

  20. A. Tolga Bozdana, N.N.Z. Gindy, and H. Li, Deep Cold Rolling with Ultrasonic Vibrations—A New Mechanical Surface Enhancement Technique, Int. J. Mach. Tools Manuf, 2005, 45(6), p 713–718. https://doi.org/10.1016/j.ijmachtools.2004.09.017

    Article  Google Scholar 

  21. L.X. Lu, J. Sun, L. Li, and Q.C. **ong, Study on Surface Characteristics of 7050-T7451 Aluminum Alloy by Ultrasonic Surface Rolling Process, Int. J. Adv. Manuf. Technol., 2016, 87, p 2533–2539. https://doi.org/10.1007/s00170-016-8659-4

    Article  Google Scholar 

  22. V. Fartashvand, A. Abdullah, and S.A. Sadough Vanini, Investigation of Ti-6Al-4V Alloy Acoustic Softening, Ultrason. Sonochem., 2017, 38, p 744–749. https://doi.org/10.1016/j.ultsonch.2016.07.007

    Article  CAS  PubMed  Google Scholar 

  23. A. Rusinko, Analytical Description of Ultrasonic Hardening and Softening, Ultrasonics, 2011, 51(6), p 709–714. https://doi.org/10.1016/j.ultras.2011.02.003

    Article  CAS  PubMed  Google Scholar 

  24. F. Jiao, S.L. Lan, B. Zhao, and Y. Wang, Theoretical Calculation and Experiment of the Surface Residual Stress in the Plane Ultrasonic Rolling, J. Manuf. Process., 2020, 50, p 573–580. https://doi.org/10.1016/j.jmapro.2019.12.058

    Article  Google Scholar 

  25. M. Zhang, Z.H. Liu, J. Deng, M.J. Yang, Q.L. Dai, and T.Z. Zhang, Optimum Design of Compressive Residual Stress Field Caused by Ultrasonic Surface Rolling with a Mathematical Model, Appl. Math. Model., 2019, 76, p 800–831. https://doi.org/10.1016/j.apm.2019.07.009

    Article  Google Scholar 

  26. X.S. Luan, W.X. Zhao, Z.Q. Liang, S.H. **ao, G.X. Liang, Y.F. Chen, S.K. Zou, and X.B. Wang, Experimental Study on Surface Integrity of Ultra-High-Strength Steel by Ultrasonic Hot Rolling Surface Strengthening, Surf. Coat. Technol., 2020, 392, p125745. https://doi.org/10.1016/j.surfcoat.2020.125745

    Article  CAS  Google Scholar 

  27. Z. Gu, S.Q. **, P. Mao, and C. Wang, Microstructure and wear Behavior of Mechanically Alloyed Powder AlxMo0.5NbFeTiMn2 High Entropy Alloy Coating Formed by Laser Cladding, Surf. Coat. Technol., 2020, 401, p 126244. https://doi.org/10.1016/j.surfcoat.2020.126244

    Article  CAS  Google Scholar 

  28. C.X. Wang, C.H. Jiang, M. Chen, L.B. Wang, H.B. Liu, and V. Ji, Residual Stress and Microstructure Evolution of Shot Peened Ni-Al Bronze at Elevated Temperatures, Mater. Sci. Eng. A, 2017, 707, p 629–635. https://doi.org/10.1016/j.msea.2017.09.098

    Article  CAS  Google Scholar 

  29. Y.V. Milman, B.M. Mordyuk, K.E. Grinkevych, S.I. Chugunova, I.V. Goncharova, A.I. Lukyanov, and D.A. Lesyk, New Opportunities to Determine the Rate of Wear of Materials at Friction by the Indentation Data, Prog. Phys. Metals, 2021, 21(4), p 554–579.

    Article  Google Scholar 

  30. D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, A. Lamikiz, G.I. Prokopenko, Y.V. Milman, and K.E. Grinkevych, Microstructure Related Enhancement in Wear Resistance of Tool Steel AISI D2 by Applying Laser Heat Treatment Followed by Ultrasonic Impact Treatment, Surf. Coat. Technol., 2017, 328, p 344–354. https://doi.org/10.1016/j.surfcoat.2017.08.045

    Article  CAS  Google Scholar 

  31. H.T. Wang, H.L. Yao, M.X. Zhang, X.B. Bai, Z.H. Yi, Q.Y. Chen, and G.C. Ji, Surface Nanocrystallization Treatment of AZ91D Magnesium Alloy by Cold Spraying Shot Peening Process, Surf. Coat. Technol., 2019, 374, p 485–492. https://doi.org/10.1016/j.surfcoat.2019.04.093

    Article  CAS  Google Scholar 

  32. X.H. Shen, H. Su, J.T. Wang, C.S. Zhang, C.H. Xu, and X.L. Bai, New Approach Towards the Machining Process After Laser Cladding, Arch. Civ. Mech. Eng., 2021, 21, p 1–17. https://doi.org/10.1007/s43452-020-00153-8

    Article  Google Scholar 

  33. T.L. Fu, Z.L. Zhan, and L. Zhang, Effects of Surface Mechanical Attrition Treatment and Spot Peening on Corrosion Behavior of Commercial Pure Titanium, Trans. Mater. Heat Treatment, 2014, 35, p 207–211.

    Google Scholar 

  34. X.Y. Liu, P.K. Chu, and C.X. Ding, Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications, Mater. Sci. Eng. R. Rep., 2004, 47(3), p 49–121.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support by the National Natural Science Foundation of China (52075275, 51675289), the Natural Science Foundation of Shandong Province (ZR2022QE241, ZR2021QE230), and the Talent Research Project of Qilu University of Technology (Shandong Academy of Sciences) (2023RCKY124).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guosheng Su or Yan **a.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Su, G., **a, Y. et al. Effects of the Ultrasonic Surface Rolling Process on the Surface Integrity, Wear Resistance, and Corrosion Resistance of 4Cr5MoSiV1 Tool Steel Before and After Quenching. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09606-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09606-0

Keywords

Navigation