Log in

Effect of Hydroxyapatite on Sinterability, Mechanical Properties, and Bioactivity of Chemically Synthesized Alumina–Zirconia Composites

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This work focuses on fabrication of 80 alumina/(20-x)zirconia/xHA (x = 0.0. 5.0, 10.0 and 15 wt.%) composites. Alumina, zirconia and hydroxyapatite powders were synthesized separately by sol-gel method, then mixed and sintered at different temperatures. The obtained ceramic composites were investigated by x-ray diffraction (XRD), water displacement method, and scanning electron microscope. The compressive strength, pore size distribution, bioactivity and antibacterial were also investigated. The results indicated that high-porosity composites were obtained after sintering. With increasing hydroxyapatite content, the composites sintered at 1600 °C exhibited the lowest porosity (33.92–39.92%) and highest bulk density (2.75–2.42 g/cm3) as compared to that sintered at 1500 and 1700 °C. The addition of HA led to reduction of bulk density and increasing the apparent porosity. After sintering, the phases of alumina, monoclinic zirconia, tetragonal zirconia, tri-calcium phosphate and calcium aluminate appear in XRD patterns. The highest compressive strength was obtained for the composites sintered at 1600 °C; their values were 75.88, 74.57, 72.17, and 68.17 MPa for the composites that contained 0.0, 5, 10, and 15 HA, respectively. The bioactivity of composites sintered at 1600 °C increased with increasing HA content. The antibacterial activity against E. coli and Staphylococcus aureus was improved with increasing the HA content in the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

There are no data more than presented in the manuscript.

References

  1. M.A. Afzal, P. Kesarwani, K.M. Reddy, S. Kalmodia, B. Basu, and K. Balani, Functionally Graded Hydroxyapatite-Alumina-Zirconia Biocomposite: Synergy of Toughness and Biocompatibility, Mater. Sci. Eng., 2012, 32(5), p 1164–1173.

    Article  CAS  Google Scholar 

  2. M. Topuz, B. Dikici, M. Gavgali, and Y. Yilmazer, Effect of Hydroxyapatite: Zirconia Volume Fraction Ratio on Mechanical and Corrosive Properties of Ti-Matrix Composite Scaffolds, Transact. Nonferr. Metals Soc. China, 2022, 32(3), p 882–894.

    Article  CAS  Google Scholar 

  3. M. Topuz and B. Dikici, Mehmet Gavgal Titanium-Based Composite Scaffolds Reinforced with Hydroxyapatite-Zirconia: Production, Mechanical and In-Vitro Characterization, J. Mech. Behav. Biomed. Mater.Behav. Biomed. Mater., 2021, 118, 104480.

    Article  CAS  Google Scholar 

  4. M.F. Zawrah, A.B. Shehata, E.A. Kishar, and R.N. Yamani, Synthesis, Hydration and Sintering of Calcium Aluminate Nanopowder for Advanced Applications, C. R. Chim., 2011, 14(6), p 611–618. https://doi.org/10.1016/j.crci.2010.11.004

    Article  CAS  Google Scholar 

  5. M.F. Zawrah and N. Khalil, Synthesis and Characterization of Calcium Aluminate Nano Ceramic Powders for New Applications, Ceram. Int., 2007, 33, p 1419–1425.

    Article  CAS  Google Scholar 

  6. M. Topuz, B. Dikici, M. Gavgali, and M. Kaseem, Processing of Ti/(HA+ZrO2) Biocomposite and 50% Porous Hybrid Scaffolds with LOW YOUNG’S MODULUS by Powder Metallurgy: Comparing of Structural, Mechanical, and Corrosion Properties, Mater. Today Commun., 2021, 29, 102813.

    Article  CAS  Google Scholar 

  7. T. Yumi, Y. Masato, N. Miho, N. Akiko, H. Kazuaki, T. Yoshitomo, and Y. Kimihiro, Biocompatibility and Water Durability of Alumina-Zirconia Ceramics Blended with Microsized HA Particles, J. Ceramic Soc. Japan, 2010, 118(1378), p 498–501. https://doi.org/10.2109/jcersj2.118.498

    Article  Google Scholar 

  8. M. Inuzuka, S. Nakamura, S. Kishi, K. Yoshida, K. Hashimoto, Y. Toda, and K. Yamashita, Hydroxyapatite-Doped Zirconia for Preparation of Biomedical Composites Ceramics, Solid State Ionics, 2004, 172, p 509–513.

    Article  CAS  Google Scholar 

  9. E. Ghasali, M. Alizadeh, K. Shirvanimoghaddam, R. Mirzajany, M. Niazmand, A. Faeghi-Nia, and T. Ebadzadeh, Porous and Non-Porous Alumina Reinforced Magnesium Matrix Composite through Microwave and Spark Plasma Sintering Processes, Mater. Chem. Phys., 2018, 212, p 252–259.

    Article  CAS  Google Scholar 

  10. A. Thaveedeetrakul, V. Boonamnuayvitaya, and N. Witit-anun, Apatite Deposition on ZrO2 Thin Films by DC Unbalanced Magnetron Sputtering, Adv. Mater. Phys. Chem., 2012, 2, p 45–48.

    Article  Google Scholar 

  11. A. Thaveedeetrakul, N. Witit-Anun, and V. Boonamnuayvitaya, Effect of Sputtering Power on In Vitro Bioactivity of Zirconia Thin Films Obtained by DC Unbalanced Magnetron Sputtering, J. Chem. Eng. Jpn.Jpn., 2013, 46, p 79–86.

    Article  CAS  Google Scholar 

  12. K. Yamashita, T. Yagi, T. Arashi, K. Nakamura, and T. Umegaki, Bone-Like Apatite Coating of Alumina and Zirconia by RF-Magnetron Sputtering, Phosphorus Res. Bull., 1996, 6, p 123–126.

    Article  CAS  Google Scholar 

  13. Y. Yang, K. Kim, and J. Ong, A Review on Calcium Phosphate Coatings Produced using a Sputtering Process an Alternative to Plasma Spraying, Biomaterials, 2005, 26, p 327–337.

    Article  CAS  PubMed  Google Scholar 

  14. K. Pardun, L. Treccani, E. Volkmann, P. Streckbein, C. Heiss, G. Li Destri, G. Marletta, and K. Rezwan, Mixed Zirconia Calcium Phosphate Coatings for Dental Implants: Tailoring Coating Stability and Bioactivity Potential, J. Mater. Sci. Eng. C., 2015, 48, p 337–346.

    Article  CAS  Google Scholar 

  15. K. Pardun, D. Biol, L. Treccani, E. Volkmann, G. Li Destri, G. Marletta, P. Streckbein, C. Heiss, and K. Rezwan, Characterization of Wet Powder-Sprayed Zirconia/Calcium Phosphate Coating for Dental Implants, Clin. Implant Aspects Relat. Res., 2015, 17, p 186–199.

    Google Scholar 

  16. I. Demnati, D. Grossin, C. Combes, and C. Rey, Plasma-Sprayed Apatite Coatings: Review of Physical-Chemical Characteristics and their Biological Consequences, J. Med. Biol. Eng., 2014, 34, p 1–7.

    Article  Google Scholar 

  17. S. Yugeswaran, C.P. Yogan, A. Kobayashi, K.M. Paraskevopoulos, and B. Subramanian, Mechanical Properties, Electrochemical Corrosion and In-Vitro Bioactivity of Yttria Stabilized Zirconia Reinforced Hydroxyapatite Coatings Prepared by Gas Tunnel Type Plasma Spraying, J. Mech. Behav. Biomed. Mater.Behav. Biomed. Mater., 2012, 9, p 22–33.

    Article  CAS  Google Scholar 

  18. L. Sun, C.C. Berndt, and C.P. Grey, Phase: Structural and Microstructural Investigations of Plasma Sprayed Hydroxyapatite Coatings, Mater. Sci. Eng. A, 2003, 360, p 70–84.

    Article  Google Scholar 

  19. M. Araújo, M. Miola, A. Venturello, G. Baldib, J. Pérez, and E. Verné, Glass Coatings on Zirconia with Enhanced Bioactivity, J. Eur. Ceram. Soc., 2016, 36, p 3201–3210.

    Article  Google Scholar 

  20. M. Ferraris, E. Verne, P. Appendino, C. Moisescu, A. Krajewski, A. Ravaglioli, and A. Piancastelli, Coatings on Zirconia for Medical Applications, Biomaterials, 2000, 21, p 765–773.

    Article  CAS  PubMed  Google Scholar 

  21. A. Ignatius, M. Peraus, S. Schorlemmer, P. Augat, W. Burger, S. Leyen, and L. Claes, Osseointegration of Alumina with A Bioactive Coating under Load-Bearing and Unloaded Conditions, Biomaterials, 2005, 26, p 2325–2332.

    Article  CAS  PubMed  Google Scholar 

  22. A. Oyane, M. Kakehata, I. Sakamaki, A. Pyatenko, H. Yashiro, A. Ito, and K. Torizuka, Biomimetic Apatite Coating on Yttria-Stabilized Tetragonal Zirconia Utilizing Femtosecond Laser Surface Processing, Surf. Coat. Technol., 2016, 296, p 88–95.

    Article  CAS  Google Scholar 

  23. S. Beranic Klopcic, J. Kovac, and T. Kosmac, Apatite-Forming Ability of Alumina and Zirconia Ceramics in A Supersaturated Ca/P Solution, Biomol. Eng.. Eng., 2007, 24, p 467–471.

    Article  Google Scholar 

  24. C.R. Rambo, F.A. Muller, L. Muller, H. Sieber, I. Hofmann, and P. Greil, Biomimetic Apatite Coating on Biomorphous Alumina Scaffolds, J. Mater. Sci. Eng. C, 2006, 26, p 92–99.

    Article  CAS  Google Scholar 

  25. K. Hata and T. Kokubo, Growth of A Bonelike Apatite Layer on A Substrate by Biomimetic Process, J. Am. Ceram. Soc., 1995, 78, p 1049–1053.

    Article  CAS  Google Scholar 

  26. X. Li, S. Ni, and T.J. Webster, In Vitro Apatite Formation on Porous Anodic Alumina Induced by A Phosphorylation Treatment, J. Biomater. Appl.Biomater. Appl., 2014, 29, p 321–328.

    Article  Google Scholar 

  27. M. Dehestani, Lars Ilver, Erik Adolfsson, Enhancing the Bioactivity of Zirconia and Zirconia Composites by Surface Modification, J. Biomed. Mater. Res. B, 2012, 100, p 832–840.

    Article  Google Scholar 

  28. M. Nakamura, M. Inuzuka, K. Hashimoto, A. Nagai, and K. Yamashita, Improving Bioactivity and Durability of Yttria-Stabilized Zirconia, J. Mater. Sci., 2011, 46, p 7335–7343.

    Article  CAS  Google Scholar 

  29. M. Uchida, H.M. Kim, T. Kokubo, M. Nawa, T. Asano, K. Tanaka, and T. Nakamura, Apatite Forming Ability of A Zirconia/Alumina Nano-Composite Induced by Chemical Treatment, J. Biomed. Mater. Res. A, 2002, 60, p 277–282.

    Article  CAS  Google Scholar 

  30. M. Takemoto, S. Fujibayashi, M. Neo, J. Suzuki, T. Kokubo, and T. Nakamura, Bone Bonding Ability of A Hydroxyapatite Coated Zirconia/Alumina Nanocomposite with A Microporous Surface, J. Biomed. Mater. Res. A, 2006, 78, p 693–701.

    Article  CAS  PubMed  Google Scholar 

  31. H. Liang, Y.Z. Wan, F. He, Y. Huang, J.D. Xu, J.M. Li, Y.L. Wang, and Z.G. Zhao, Bioactivity of Mg-ion-Implanted Zirconia and Titanium, Appl. Surf. Sci., 2007, 253, p 3326–3333.

    Article  CAS  Google Scholar 

  32. N.M. Zain, R. Hussain, and M.R.A. Kadir, Quinone-Rich Polydopamine Functionalization of Yttria Stabilized Zirconia for Apatite Biomineralization: The Effects of Coating Temperature, Appl. Surf. Sci., 2015, 346, p 317–328.

    Article  CAS  Google Scholar 

  33. A.E. Hannora, Preparation and Characterization of Hydroxyapatite/Alumina Nanocomposites by High-Energy Vibratory Ball Milling, J. Ceram. Sci. Tech., 2014, 05(04), p 293–298.

    Google Scholar 

  34. S.J. Kim, H.G. Bang, J.H. Song, and S.Y. Park, Effect of Fluoride Additive on the Mechanical Properties of Hydroxyapatite/ Alumina Composites, Ceram. Int., 2009, 35, p 1647–1650.

    Article  CAS  Google Scholar 

  35. I. Mobasherpour, M. Solati Hash**, S.S. Razavi Toosi, and R. Darvishi Kamachali, Effect of the Addition ZrO2-Al2O3 on Nanocrystalline Hydroxyapatite Bending Strength and Fracture Toughness, Ceram. Int., 2009, 35, p 1569–1574.

    Article  CAS  Google Scholar 

  36. Z. Wu, L. He, and Z. Chen, Composite Biocoating of Hydroxyapatite/Al2O3 on Titanium Formed by Al Anodization and Electrodeposition, Mater. Lett., 2007, 61, p 2952–2955.

    Article  CAS  Google Scholar 

  37. W. Suchanek, M. Yashima, M. Kakihana, and M. Yoshimura, Hydroxyapatite/Hydroxyapatite-Whisker Composites without Sintering Additives: Mechanical Properties and Microstructural Evaluation, J. Am. Ceram. Soc., 1997, 80(11), p 2805–2813.

    Article  CAS  Google Scholar 

  38. T. Matsuno, K. Watanabe, K. Ono, and M. Koishi, Microstructure and Mechanical Properties of Sintered Body of Zirconia Coated Hydroxyapatite Particles, J. Mater. Sci. Lett., 2000, 19, p 573–576.

    Article  CAS  Google Scholar 

  39. W. Suchanek, M. Yashima, M. Kakihana, and M. Yoshimura, Processing and Mechanical Properties of Hydroxyapatite Reinforced with Hydroxyapatite Whiskers, Biomaterials, 1996, 17, p 1715–1723.

    Article  CAS  PubMed  Google Scholar 

  40. S. Ramesh, N.S. Virik, L.T. Bang, A. Niakan, C.Y. Tan, J. Purbolaksonoa, B.K. Yap, and W.D. Teng, Effect of Forsterite Addition on the Densification and Properties of Hydroxyapatite Bioceramic, J. Ceram. Process. Res., 2016, 17(1), p 30–35.

    Google Scholar 

  41. L.-H. He, O.C. Standard, T.T.Y. Huang, B.A. Latella, and M.V. Swain, Mechanical Behavior of Porous Hydroxyapatite, Acta Biomater. Biomater., 2008, 4, p 577–586.

    Article  CAS  Google Scholar 

  42. O. Prokopiev and I. Sevostianov, Dependence of the Mechanical Properties of Sintered Hydroxyapatite on the Sintering Temperature, Mater. Sci. Eng. A, 2006, 431(1–2), p 218–227.

    Article  Google Scholar 

  43. R.M. Khattab, M.M.S. Wahsh, and N.M. Khalil, Preparation and Characterization of Porous Alumina Ceramics through Starch Consolidation Casting Technique, Ceram. Int., 2012, 38, p 4723–4728.

    Article  CAS  Google Scholar 

  44. M.M.S. Wahsh, R.M. Khattab, and M.F. Zawrah, Alumina/Zirconia Ceramic Membranes Fabricated by Temperature Induced Forming Technique, Ceramics International, Ceram. Int., 2022, 48, p 26460–26465.

    Article  CAS  Google Scholar 

  45. G.A. El-Shobaky, A.M. Fagal, and M. Ghozza, Mokhtar, Effects of Li2O Do** on Surface and Catalytic Properties of CuO–ZnO/Al2O3 System, Colloids Surf. ASurf., A, 1998, 142(1), p 17–25.

    Article  CAS  Google Scholar 

  46. M. Awaad, M.F. Zawrah, and N.M. Khalil, In Situ formation of Zirconia-Spinel-Mullite Ceramic Composites, Ceram. Int., 2008, 34, p 429–434.

    Article  CAS  Google Scholar 

  47. R.M. Khattab, S.B. Hanna, M.F. Zawrah, and L.G. Girgis, Alumina–Zircon Refractory Materials for Lining of the Basin of Glass Furnaces: Effect of Processing Technique and TiO2 Addition, Ceram. Int., 2015, 41(1), p 1623–1629.

    Article  CAS  Google Scholar 

  48. M.F. Zawrah, R.M. Khattab, L.G. Girgis, E.E. El Shereefy, and S.E. Abo Sawan, Synthesis of Anatase Nano Wire and Its Application as A Functional Top Layer for Alumina Membrane, Ceram. Int., 2017, 43(18), p 17104–17110. https://doi.org/10.1016/j.ceramint.2017.09.127

    Article  CAS  Google Scholar 

  49. M. Mokhtar, Application of Synthetic Layered Sodium Silicate Magadiite Nanosheets for Environmental Remediation of Methylene Blue Dye in Water, Materials, 2017, 10, p 760.

    Article  PubMed  PubMed Central  Google Scholar 

  50. M.F. Zawrah, R.M. Khattab, L.G. Girgis, E.E. El Shereefy, and S.E. Abo Sawan, Effect of CTAB as a Foaming Agent on the Properties of Alumina Ceramic Membranes, Ceram. Int., 2014, 40(4), p 5299–5305. https://doi.org/10.1016/j.ceramint.2013.10.106

    Article  CAS  Google Scholar 

  51. M.F. Zawrah, R.M. Khattab, and L.G. Girgis, Effect of Fe2O3 and MgO on Gelcasting and Sinterability of Alumina Ceramics, Interceram, 2013, 62(3), p 204–210.

    CAS  Google Scholar 

  52. M.F. Zawrah, R. Khttab, L. Girgis, and E. Saad, The Role of Nano TiO2 in Sintering and Properties of Alumina Ceramics, Materials, Interceram, 2011, 60(1), p 14–18.

    CAS  Google Scholar 

  53. M.F. Zawrah, R. Khttab, L. Girgis, and E. Saad, Sinterability, Microstructure and Mechanical Properties of Gelcasted Alumina Ceramic, Interceram, 2010, 59(1), p 22–27.

    CAS  Google Scholar 

  54. M.F. Zawrah, R. Khttab, L. Girgis, and E. Saad, Gelcasting of Alumina Ceramics for Advanced Applications, Interceram, 2009, 58(4), p 196–201.

    CAS  Google Scholar 

  55. M. F. Zawrah, J. Schneider, and K-H Zum Gahr, Friction and Wear of Laser-induced Alumina Ceramics, Industrial Ceramics, Vol. 22, No. 2, (2002)

  56. M.F. Zawrah, J. Schneider, and K.H. Zum Gahr, Microstructure and Mechanical Characteristics of Laser-Alloyed Alumina Ceramics, Mater. Sci. Eng. A, 2002, 332(1–2), p 167–173.

    Article  Google Scholar 

  57. Cristina Vasconcelos (2012). New Challenges in the Sintering of HA/ZrO2 Composites, Sintering of Ceramics -New Emerging Techniques, Dr. Arunachalam Lakshmanan (Ed.), ISBN:978-953-51-0017-1,InTech,Available from: http://www.intechopen.com/books/sintering-of-ceramics-new-emerging-techniques/new-challenges-in-the-sintering-of-ha-zro2-composites

  58. A.A. Khalil, M.F. Zawrah, E.A. Saad, and H.A. Badr, Synthesis and Properties of Hydroxyapatite Nanorods, Interceram, 2015, 8, p 358–362.

    Google Scholar 

  59. S.N. Basahel, T.T. Ali, K. Narasimharao, A.A. Bagabas, and M. Mokhtar, Effect of Iron Oxide Loading on the Phase Transformation and Physicochemical Properties of Nanosized Mesoporous ZrO2, Materials Res. Bull., 2012, 47(11), p 3463–3472. https://doi.org/10.1016/j.materresbull.2012.07.003

    Article  CAS  Google Scholar 

  60. Erdem Ahin, Synthesis and Characterization of Hydroxyapatite-Alumina-Zirconia Biocomposites, Thesis, Graduate School of Engineering and Sciences of Izmir Institute of Technology, 2006

  61. M.M.S. Wahsh, R.M. Khattab, and M.F. Zawrah, Sintering and Technological Properties of Alumina/Zirconia/Nano-TiO2 Ceramic Composites, Mater. Res. Bull., 2013, 48, p 1411–1414.

    Article  CAS  Google Scholar 

  62. J. Szczerba, Z. Pdzich, and D. Madej, Synthesis of Spinel – Calcium Zirconate Materials, Mater. Ceram. /Ceram. Mater./, 2011, 63(1), p 27–33.

    CAS  Google Scholar 

  63. D. Madej and J. Szczerba, Preparation of Al2O3–CaAl12O19–ZrO2 Composite Ceramic Material by the Hydration and Sintering of Ca7ZrAl6O18 Reactive Alumina Mixture, Ceram.-Silikáty, 2016, 60(2), p 27–33.

    Article  CAS  Google Scholar 

  64. C.H. Leong, A. Muchtar, C.Y. Tan, M. Razali, and N.F. Amat, Sintering of Hydroxyapatite/Yttria Stabilized Zirconia Nanocomposites under Nitrogen Gas for Dental Materials, Adv. Mater. Sci. Eng., 2014, 2014, p 1–6. https://doi.org/10.1155/2014/367267

    Article  Google Scholar 

  65. Y. Tanaka, M. Yoshida, M. Nakamura, A. Nagai, K. Hashimoto, Y. Toda, and K. Yamashita, Biocompatibility and Water Durability of Alumina-Zirconia Ceramics Blended with Microsized HA Particles, J. Ceram. Soc. Japan, 2010, 118(1378), p 498–501.

    Article  CAS  Google Scholar 

  66. M.R. Goudarzi, M. Bagherzadeh, M. Fazilati, F. Riahi, H. Salavati, and S.S. Esfahani, Evaluation of Antibacterial Property of Hydroxyapatite and Zirconium Oxide-Modificated Magnetic Nanoparticles Against Staphylococcus aureus and Escherichia coli, IET Nanobiotechnol.Nanobiotechnol., 2019, 13, p 449–455.

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

H. B, M. Z., R. K., and H. S. contributed to the study conception and design. Material preparation, data collection and analysis were performed by all authors. The bioactivity and antibacterial tests were conducted by A. R. The first draft of the manuscript was written by all authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. F. Zawrah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This is to confirm that this work is exempt from ethical review under the Approval for Exempt Review No.:EX0090072023.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badr, H.A., Reda, A.E., Zawrah, M.F. et al. Effect of Hydroxyapatite on Sinterability, Mechanical Properties, and Bioactivity of Chemically Synthesized Alumina–Zirconia Composites. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09531-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09531-2

Keywords

Navigation