Log in

Mechanism of the Interaction Between Hydrogen, Microstructure, and Mechanical Properties in Low-Alloy High-Strength Marine Steel

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Herein, the interaction between hydrogen, microstructure, and mechanical properties in low-alloy high-strength marine steel was elucidated via microstructural characterization, internal friction analysis, hydrogen diffusion, and hydrogen-embrittlement sensitivity evaluation. Results indicated that the bainite structure of hot-rolled steel transformed into a coarse ferrite–pearlite structure after normalizing, and the hydrogen trap density decreased with decreasing grain boundary and dislocation densities. Therefore, the effective diffusion coefficient of hydrogen in the normalized steel plates increased with decreasing hydrogen permeation time. Owing to the coarsening of the microstructure, the normalized steel plates exhibited higher sensitivity to hydrogen embrittlement. The diffusion of a large amount of hydrogen into the steel considerably deteriorated its plasticity, resulting in a transition of its fracture mode from microvoid coalescence fracture to cleavage fracture. The internal friction behavior indicated that hydrogen in the microstructure generated a hydrogen-induced Snoek peak, as well as reduced the activation energy of Snoek–Kê–Köster and Kê peaks. Finally, the internal friction spectra revealed that the interaction between hydrogen and point defects, dislocations, grain boundaries, and precipitates was sequentially enhanced due to the increase in activation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.B. Djukic, V. Sijacki Zeravcic, G.M. Bakic, A. Sedmak and B. Rajicic, Hydrogen Damage of Steels: A Case Study and Hydrogen Embrittlement Model, Eng. Fail. Anal., 2015, 58, p 485–498.

    Article  CAS  Google Scholar 

  2. Q. Deng, W. Zhao, W. Jiang, T. Zhang, T. Li and Y. Zhao, Hydrogen Embrittlement Susceptibility and Safety Control of Reheated CGHAZ in X80 Welded Pipeline, J. Mater. Eng. Perform., 2018, 27(4), p 1654–1663.

    Article  CAS  Google Scholar 

  3. V. Arniella, A. Zafra, G. Álvarez, J. Belzunce and C. Rodríguez, Comparative Study of Embrittlement of Quenched and Tempered Steels in Hydrogen Environments, Int. J. Hydrog Energ., 2022, 47(38), p 17056–17068.

    Article  CAS  Google Scholar 

  4. J. Venezuela, T. Hill, Q. Zhou, H. Li, Z. Shi, F. Dong, R. Knibbe, M. Zhang, M.S. Dargusch and A. Atrens, Hydrogen-Induced Fast Fracture in Notched 1500 and 1700 MPa Class Automotive Martensitic Advanced High-Strength Steel, Corros. Sci., 2021, 188, p 109550.

    Article  CAS  Google Scholar 

  5. N. **ao, W. Hui, Y. Zhang and X. Zhao, Hydrogen Embrittlement Behavior of a Vacuum-Carburized Gear Steel, Acta Metall. Sin., 2021, 57, p 977–988.

    CAS  Google Scholar 

  6. L.W. Tsay, H.L. Lu and C. Chen, The Effect of Grain Size and Aging on Hydrogen Embrittlement of a Maraging Steel, Corros. Sci., 2008, 50, p 2506–2511.

    Article  CAS  Google Scholar 

  7. S. Lynch, Hydrogen Embrittlement Phenomena and Mechanisms, Corros. Rev., 2012, 30, p 105–123.

    Article  CAS  Google Scholar 

  8. M. Koyama, E. Akiyama, Y.-K. Lee, D. Raabe and K. Tsuzaki, Overview of Hydrogen Embrittlement in High-Mn Steels, Int. J. Hydrog. Energ., 2017, 42(17), p 12706–12723.

    Article  CAS  Google Scholar 

  9. H. Ma, L. Sun, H. Luo and X. Li, Hydrogen Embrittlement of High-Strength Marine Steel as a Weld Joint in Artificial Seawater Under Cathodic Polarization, Eng. Fail. Anal., 2022, 134, p 106044.

    Article  CAS  Google Scholar 

  10. A. Świerczyńska, D. Fydrych, M. Landowski, G. Rogalski and J. Łabanowski, Hydrogen Embrittlement of X2CrNiMoCuN25-6-3 Super Duplex Stainless Steel Welded Joints Under Cathodic Protection, Constr. Build. Mater., 2020, 238, p 117697.

    Article  Google Scholar 

  11. Z. Wang, Q. Lu, Z.H. Cao, H. Chen, M.X. Huang and J.F. Wang, Review on Hydrogen Embrittlement of Press-Hardened Steels for Automotive Applications, Acta Metall. Sin. Engl. Lett., 2022 https://doi.org/10.1007/s40195-022-01408-4

    Article  Google Scholar 

  12. M. Pinson, L. Claeys, H. Springer, V. Bliznuk, T. Depover and K. Verbeken, Investigation of the Effect of Carbon on the Reversible Hydrogen Trap** Behavior in Lab-Cast Martensitic Fe–C Steels, Mater. Charact., 2022, 184, p 111671.

    Article  CAS  Google Scholar 

  13. W. Hui, H. Zhang, Y. Zhang, X. Zhao and C. Shao, Effect of Nickel on Hydrogen Embrittlement Behavior of Medium-Carbon High Strength Steels, Mater. Sci. Eng. A, 2016, 674, p 615–625.

    Article  CAS  Google Scholar 

  14. P. Xu, C. Li, M. Wei Li, W.L. Zhu and K. Zhang, Effect of Microstructure on Hydrogen Embrittlement Susceptibility in Quenching-Partitioning-Tempering Steel, Mater. Sci. Eng. A, 2022, 831, p 142046.

    Article  CAS  Google Scholar 

  15. K.S. Ghosh and D.K. Mondal, Effect of Grain Size on Mechanical Electrochemical and Hydrogen Embrittlement Behaviour of a Micro-Alloy Steel, Mater. Sci. Eng. A, 2013, 559, p 693–705.

    Article  CAS  Google Scholar 

  16. M.A. Liu, P.E.J. Rivera-Díaz-del-Castillo, J.I. Barraza-Fierro, H. Castaneda and A. Srivastava, Microstructural Influence on Hydrogen Permeation and Trap** in Steels, Mater. Des., 2019, 167, p 107605.

    Article  CAS  Google Scholar 

  17. D. Zhang, X. Gao, Y. Du, L. Du, H. Wang, Z. Liu and G. Su, Effect of Microstructure Refinement on Hydrogen-Induced Damage Behavior of Low Alloy High Strength Steel for Flexible Riser, Mater. Sci. Eng. A, 2019, 765, p 138278.

    Article  CAS  Google Scholar 

  18. R. Shi, Z. Wang, L. Qiao and X. Pang, Effect of In-Situ Nanoparticles on the Mechanical Properties and Hydrogen Embrittlement of High-Strength Steel, Int. J. Miner. Metall. Mater., 2021, 28(4), p 644–656.

    Article  CAS  Google Scholar 

  19. S. Zhang, S. Liu, J. Wan and W. Liu, Effect of Nb–Ti Multi-microalloying on the Hydrogen Trap** Efficiency and Hydrogen Embrittlement Susceptibility of Hot-Stamped Boron Steel, Mater. Sci. Eng. A, 2020, 772, p 138788.

    Article  CAS  Google Scholar 

  20. J. Moon, J. Choi, S.-K. Han, S. Huh, S.-J. Kim, C.-H. Lee and T.-H. Lee, Influence of Precipitation Behavior on Mechanical Properties and Hydrogen Induced Cracking During Tempering of Hot-Rolled API Steel for Tubing, Mater. Sci. Eng. A, 2016, 652, p 120–126.

    Article  CAS  Google Scholar 

  21. Y.-S. Chen, D. Haley, S.S.A. Gerstl, A.J. London, F. Sweeney, R.A. Wepf, W.M. Rainforth, P.A.J. Bagot and M.P. Moody, Direct Observation of Individual Hydrogen Atoms at Trap** Sites in a Ferritic Steel, Science, 2017, 355, p 1196–1199.

    Article  CAS  Google Scholar 

  22. L. Shi, Z. Yan, Y. Liu, C. Zhang, Z. Qiao, B. Ning and H. Li, Improved Toughness and Ductility in Ferrite/Acicular Ferrite Dual-Phase Steel Through Intercritical Heat Treatment, Mater. Sci. Eng. A, 2014, 590, p 7–15.

    Article  CAS  Google Scholar 

  23. M. Masoumi, L.P.M. Santos, I.N. Bastos, S.S.M. Tavares, M.J.G. da Silva and H.F.G. de Abreu, Texture and Grain Boundary Study in High Strength Fe–18Ni–Co Steel Related to Hydrogen Embrittlement, Mater. Des., 2016, 91, p 90–97.

    Article  CAS  Google Scholar 

  24. P. Gong, J. Nutter, P.E.J. Rivera-Diaz-Del-Castillo and W.M. Rainforth, Hydrogen Embrittlement Through the Formation of Low-Energy Dislocation Nanostructures in Nanoprecipitation-Strengthened Steels, Sci. Adv., 2020, 6, p eabb6152.

    Article  CAS  Google Scholar 

  25. P. Gong, A. Turk, J. Nutter, F. Yu, B. Wynne, P. Rivera-Diaz-del-Castillo and W.M. Rainforth, Hydrogen Embrittlement Mechanisms in Advanced High Strength Steel, Acta Mater., 2022, 223, p 117488.

    Article  CAS  Google Scholar 

  26. R. Silverstein, D. Eliezer and E. Tal-Gutelmacher, Hydrogen Trap** in Alloys Studied by Thermal Desorption Spectrometry, J. Alloy. Compd., 2018, 747, p 511–522.

    Article  CAS  Google Scholar 

  27. A. Tehranchi, X. Zhou and W.A. Curtin, A Decohesion Pathway for Hydrogen Embrittlement in Nickel: Mechanism and Quantitative Prediction, Acta Mater., 2020, 185, p 98–109.

    Article  CAS  Google Scholar 

  28. J. Venezuela, Q. Liu, M. Zhang, Q. Zhou and A. Atrens, A Review of Hydrogen Embrittlement of Martensitic Advanced High-Strength Steels, Corros. Rev., 2016, 34(3), p 153–186.

    Article  CAS  Google Scholar 

  29. D. Zhang, W. Li, X. Gao, L. Fu, J. Guo, J. Zhang, Q. Pang and Z. Xu, Effect of Cold Deformation Before Heat Treatment on the Hydrogen Embrittlement Sensitivity of High-Strength Steel for Marine Risers, Mater. Sci. Eng. A, 2022, 845, p 143220.

    Article  CAS  Google Scholar 

  30. H. Zhang, J. Hou, D. Zhang, W. Li, J. Xu, Q. Pang, Q. Zhu and J. Zhang, Effect of Quenching, Lamellarizing, and Tempering on Reversed Austenite and Cryogenic Toughness of 9Ni Steels, J. Mater. Eng. Perform., 2023 https://doi.org/10.1007/s11665-023-08129-4

    Article  Google Scholar 

  31. D. Zhang, C. Cui, W. Li and J. Xu, Hydrogen Diffusion and Hydrogen Embrittlement Failure Behavior of AH36 Marine Steel Subjected to High Heat Input Welding, Steel Res. Int., 2023, 94, p 2200539.

    Article  CAS  Google Scholar 

  32. J. Hu, L.-X. Du, W. Xu, J.-H. Zhai, Y. Dong, Y.-J. Liu and R.D.K. Misra, Ensuring Combination of Strength, Ductility and Toughness in Medium-Manganese Steel Through Optimization of Nano-scale Metastable Austenite, Mater. Charact., 2018, 136, p 20–28.

    Article  CAS  Google Scholar 

  33. J. Hu, L.-X. Du, Y. Dong, Q.-W. Meng and R.D.K. Misra, Effect of Ti Variation on Microstructure Evolution and Mechanical Properties of Low Carbon Medium Mn Heavy Plate Steel, Mater. Charact., 2019, 152, p 21–35.

    Article  CAS  Google Scholar 

  34. L. Vandewalle, M.J. Konstantinović, K. Verbeken and T. Depover, A Combined Thermal Desorption Spectroscopy and Internal Friction Study on the Interaction of Hydrogen with Microstructural Defects and the Influence of Carbon Distribution, Acta Mater., 2022, 241, p 118374.

    Article  CAS  Google Scholar 

  35. W. Li, H. Zhang, H. Fu, J. Zhang and X. Qi, Internal Friction Study of Mechanism of Bake-Hardening on Low Carbon Steel, Acta Metall. Sin., 2015, 51, p 385–392.

    CAS  Google Scholar 

  36. M. Sun, W. Jiang, X. Liu, T. Chen, X. Wang and Q. Fang, A Comparative Study on the Grain Boundary Internal Friction Peak of Pure Iron, Mater. Lett., 2021, 305, p 130814.

    Article  CAS  Google Scholar 

  37. X.Y. Cheng, H. Li and X.B. Cheng, Carbides and Possible Hydrogen Irreversible Trap** Sites in Ultrahigh Strength Round Steel, Micron, 2017, 103, p 22–28.

    Article  CAS  Google Scholar 

  38. W. Chen, W. Zhao, P. Gao, F. Li, S. Kuang, Y. Zou and Z. Zhao, Interaction Between Dislocations, Precipitates and Hydrogen Atoms in a 2000 MPa Grade Hot-Stamped Steel, J. Mater. Res. Technol., 2022, 18, p 4353–4366.

    Article  CAS  Google Scholar 

  39. N. Yu and J.W. Ji, The Internal Friction of Deformed Fe-Nb-C Alloys in the Range from Room Temperature to 180 °C, Acta Metall. Sin., 2002, 38(3), p 230–234.

    CAS  Google Scholar 

  40. X. Yuan, W. Li, Q. Pang, C. Zhang and G. Lu, Study on the Performance and Strain Aging Behavior of Solid-Solution State Low-Carbon Steel, Mater. Sci. Eng. A, 2018, 726, p 282–287.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (Grant Nos. 52074152, 52204346), Joint Foundation of University of Science and Technology Liaoning and State Key Laboratory of metal materials for marine equipment and application (Grant No. HGSKL-USTLN(2022)03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weijuan Li or Ling Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Li, B., Fu, L. et al. Mechanism of the Interaction Between Hydrogen, Microstructure, and Mechanical Properties in Low-Alloy High-Strength Marine Steel. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08637-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08637-3

Keywords

Navigation