Log in

Osteogenic Properties of Titanium Alloy Ti6Al4V-Hydroxyapatite Composites Fabricated by Selective Laser Melting

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HA) has been widely used for coating metal bone implants. However, HA coating may separate from the metal substrates, resulting in poor performance such as inflammatory reactions which may finally lead to implant failure. Dispersing HA into metal substrate may be a viable solution but such a composite may suffer from inferior mechanical strength. Therefore, a functionally graded material (FGM) with HA dispersing in metal substrate in gradients is introduced to increase surface osteogenic capability and simultaneously maintain a good mechanical strength of the bone implant. In this study, Ti6Al4V(Ti64)-HA composite with different component of HA and their corresponding FGMs were fabricated by selective laser melting (SLM). It was demonstrated that compared with the pure Ti64 and Ti64-2.5%HA composite, Ti64-1%HA composite seemed to have a better osteogenic promoting property in vitro. Both the FGMs significantly promoted the osteogenic activities of the pure Ti64 in vivo. Moreover, functionally graded structure improved the anti-compression properties of composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G.M. Peñarrieta-Juanito, M. Costa, M. Cruz, G. Miranda, B. Henriques, J. Marques, R. Magini, A. Mata, J. Caramês, F. Silva, and J.C.M. Souza, Bioactivity of Novel Functionally Structured Titanium-Ceramic Composites in Contact with Human Osteoblasts, J. Biomed. Mater. Res. A, 2018, 106(7), p 1923–1931. https://doi.org/10.1002/jbm.a.36394

    Article  CAS  Google Scholar 

  2. A. Civantos, E. Martínez-Campos, V. Ramos, C. Elvira, A. Gallardo, and A. Abarrategi, Titanium Coatings and Surface Modifications: Toward Clinically Useful Bioactive Implants, ACS Biomater. Sci. Eng., 2017, 3(7), p 1245–1261. https://doi.org/10.1021/acsbiomaterials.6b00604

    Article  CAS  Google Scholar 

  3. S. Kyrylenko, M. Sowa, A. Kazek-Kęsik, A. Stolarczyk, M. Pisarek, Y. Husak, V. Korniienko, V. Deineka, R. Moskalenko, I. Matuła, J. Michalska, A. Jakóbik-Kolon, O. Mishchenko, M. Pogorielov, and W. Simka, Nitrilotriacetic acid Improves Plasma Electrolytic Oxidation of Titanium for Biomedical Applications, ACS Appl. Mater. Interfaces, 2023, 15(16), p 19863–19876. https://doi.org/10.1021/acsami.3c00170

    Article  CAS  Google Scholar 

  4. S.E. El-Habashy, H.M. Eltaher, A. Gaballah, E.I. Zaki, R.A. Mehanna, and A.H. El-Kamel, Hybrid Bioactive Hydroxyapatite/Polycaprolactone Nanoparticles for Enhanced Osteogenesis, Mater. Sci. Eng. C Mater. Biol. Appl., 2021, 119, p 111599. https://doi.org/10.1016/j.msec.2020.111599

    Article  CAS  Google Scholar 

  5. K. Yamada, K. Imamura, H. Itoh, H. Iwata, and S. Maruno, Bone Bonding Behavior of the Hydroxyapatite Containing Glass-Titanium Composite Prepared by the Cullet Method, Biomaterials, 2001, 22(16), p 2207–2214. https://doi.org/10.1016/s0142-9612(00)00402-6

    Article  CAS  Google Scholar 

  6. D. Arcos and M. Vallet-Regí, Substituted Hydroxyapatite Coatings of Bone Implants, J. Mater. Chem. B, 2020, 8(9), p 1781–1800. https://doi.org/10.1039/c9tb02710f

    Article  CAS  Google Scholar 

  7. E. Yılmaz, B. Çakıroğlu, A. Gökçe, F. Findik, H.O. Gulsoy, N. Gulsoy, Ö. Mutlu, and M. Özacar, Novel Hydroxyapatite/Graphene Oxide/Collagen Bioactive Composite Coating on Ti16Nb Alloys by Electrodeposition, Mater. Sci. Eng. C Mater. Biol. Appl., 2019, 101, p 292–305. https://doi.org/10.1016/j.msec.2019.03.078

    Article  CAS  Google Scholar 

  8. Y. Wu, H. Tang, L. Liu, Q. He, L. Zhao, Z. Huang, J. Yang, C. Cao, J. Chen, and A. Wang, Biomimetic Titanium Implant Coated with Extracellular Matrix Enhances and Accelerates Osteogenesis, Nanomedicine, 2020, 15(18), p 1779–1793. https://doi.org/10.2217/nnm-2020-0047

    Article  CAS  Google Scholar 

  9. A. Naderi, B. Zhang, J.A. Belgodere, K. Sunder, and G. Palardy, Improved Biocompatible, Flexible Mesh Composites for Implant Applications Via Hydroxyapatite Coating with Potential for 3-Dimensional Extracellular Matrix Network and Bone Regeneration, ACS Appl. Mater. Interfaces, 2021, 13(23), p 26824–26840. https://doi.org/10.1021/acsami.1c09034

    Article  CAS  Google Scholar 

  10. W. Harun, R. Asri, J. Alias, F. Zulkifli, K. Kadirgama, S. Ghani, and J. Shariffuddin, A Comprehensive Review of Hydroxyapatite-Based Coatings Adhesion on Metallic Biomaterials, Ceram. Int., 2018, 44(2), p 1250–1268. https://doi.org/10.1016/j.ceramint.2017.10.162

    Article  CAS  Google Scholar 

  11. J. Guillem-Marti, N. Cinca, M. Punset, I.G. Cano, F.J. Gil, J.M. Guilemany, and S. Dosta, Porous Titanium-Hydroxyapatite Composite Coating Obtained on Titanium by Cold Gas Spray with High Bond Strength for Biomedical Applications, Colloids Surf. B Biointerfaces, 2019, 180, p 245–253. https://doi.org/10.1016/j.colsurfb.2019.04.048

    Article  CAS  Google Scholar 

  12. D. Mondal, L. Nguyen, I.H. Oh, and B.T. Lee, Microstructure and Biocompatibility of Composite Biomaterials Fabricated from Titanium and Tricalcium Phosphate by Spark Plasma Sintering, J. Biomed. Mater. Res. A, 2013, 101(5), p 1489–1501. https://doi.org/10.1002/jbm.a.34455

    Article  CAS  Google Scholar 

  13. J. Yang and H.J. **ang, A Three-Dimensional Finite Element Study on the Biomechanical Behavior of an FGBM Dental Implant in Surrounding Bone, J. Biomech., 2007, 40(11), p 2377–2385. https://doi.org/10.1016/j.jbiomech.2006.11.019

    Article  Google Scholar 

  14. C. Han, Q. Wang, B. Song, W. Li, Q. Wei, S. Wen, J. Liu, and Y. Shi, Microstructure and Property Evolutions of Titanium/Nano-Hydroxyapatite Composites In-Situ Prepared by Selective Laser Melting, J. Mech. Behav. Biomed. Mater., 2017, 71, p 85–94. https://doi.org/10.1016/j.jmbbm.2017.02.021

    Article  CAS  Google Scholar 

  15. M.J. Ansari, D.S. Nguyen, and H.S. Park, Investigation of SLM Process in Terms of Temperature Distribution and Melting Pool Size: Modeling and Experimental Approaches, Materials, 2019 https://doi.org/10.3390/ma12081272

    Article  Google Scholar 

  16. X. Yan, J. Pang, and Y. **g, Ultrasonic Measurement of Stress in SLM 316L Stainless Steel Forming Parts Manufactured Using Different Scanning Strategies, Materials, 2019 https://doi.org/10.3390/ma12172719

    Article  Google Scholar 

  17. S. Huang, S.L. Sing, G. de Looze, R. Wilson, and W.Y. Yeong, Laser powder Bed Fusion of Titanium-Tantalum Alloys: Compositions and Designs for Biomedical Applications, J. Mech. Behav. Biomed. Mater., 2020, 108, p 103775. https://doi.org/10.1016/j.jmbbm.2020.103775

    Article  CAS  Google Scholar 

  18. C.L. Chu, X.Y. Xue, J.C. Zhu, and Z.D. Yin, In Vivo Study on Biocompatibility and Bonding Strength of Hydroxyapatite-20vol%Ti Composite with Bone Tissues in the Rabbit, Biomed. Mater. Eng., 2006, 16(3), p 203–213.

    CAS  Google Scholar 

  19. T. Yi, C. Zhou, L. Ma, L. Wu, X. Xu, L. Gu, Y. Fan, G. **an, H. Fan, and X. Zhang, Direct 3-D Printing of Ti-6Al-4V/HA Composite Porous Scaffolds for Customized Mechanical Properties and Biological Functions, J. Tissue Eng. Regen. Med., 2020, 14(3), p 486–496. https://doi.org/10.1002/term.3013

    Article  CAS  Google Scholar 

  20. D. Bovand, M.R. Allazadeh, S. Rasouli, E. Khodadad, and E. Borhani, Studying the Effect of Hydroxyapatite Particles in Osteoconductivity of Ti-HA Bioceramic, J. Aust. Ceram. Soc., 2019, 55(2), p 395–403. https://doi.org/10.1007/s41779-018-0247-7

    Article  CAS  Google Scholar 

  21. J.D. Avila, K. Stenberg, S. Bose, and A. Bandyopadhyay, Hydroxyapatite Reinforced Ti6Al4V Composites for Load-Bearing Implants, Acta Biomater., 2021, 123, p 379–392. https://doi.org/10.1016/j.actbio.2020.12.060

    Article  CAS  Google Scholar 

  22. A. Kumar, S. Dhara, K. Biswas, and B. Basu, In Vitro Bioactivity and Cytocompatibility Properties of Spark Plasma Sintered HA-Ti Composites, J. Biomed. Mater. Res. B Appl. Biomater., 2013, 101(2), p 223–236. https://doi.org/10.1002/jbm.b.32829

    Article  CAS  Google Scholar 

  23. M. Shbeh, Z.J. Wally, M. Elbadawi, M. Mosalagae, H. Al-Alak, G.C. Reilly, and R. Goodall, Incorporation of HA into Porous Titanium to Form Ti-HA Biocomposite Foams, J. Mech. Behav. Biomed. Mater., 2019, 96, p 193–203. https://doi.org/10.1016/j.jmbbm.2019.04.043

    Article  CAS  Google Scholar 

  24. N. Aslan, B. Aksakal, and F. Findik, Fabrication of Porous-Ti6Al4V alloy by Using Hot Pressing Technique and Mg Space Holder for Hard-Tissue Biomedical Applications, J. Mater. Sci. Mater. Med., 2021, 32(7), p 80. https://doi.org/10.1007/s10856-021-06546-2

    Article  CAS  Google Scholar 

  25. J. Kim, E. Nava, and S. Rakici, Nonlinear Finite Element Model for Bending Analysis of Functionally-Graded Porous Circular/Annular Micro-Plates under Thermomechanical Loads Using Quasi-3D Reddy Third-Order Plate Theory, Materials, 2023 https://doi.org/10.3390/ma16093505

    Article  Google Scholar 

  26. M. Roy, V.K. Balla, A. Bandyopadhyay, and S. Bose, Compositionally Graded Hydroxyapatite/Tricalcium Phosphate Coating on Ti by Laser and Induction Plasma, Acta Biomater., 2011, 7(2), p 866–873. https://doi.org/10.1016/j.actbio.2010.09.016

    Article  CAS  Google Scholar 

  27. C. Han, Y. Li, Q. Wang, D. Cai, Q. Wei, L. Yang, S. Wen, J. Liu, and Y. Shi, Titanium/hydroxyapatite (Ti/HA) Gradient Materials with Quasi-Continuous Ratios Fabricated by SLM: Material Interface and Fracture Toughness, Mater. Des., 2018, 141, p 256–266. https://doi.org/10.1016/j.matdes.2017.12.037

    Article  CAS  Google Scholar 

  28. E. Yilmaz, F. Kabatas, A. Gokce, and F. Findik, Production and Characterization of a Bone-Like Porous Ti/Ti-Hydroxyapatite Functionally Graded Material, J. Mater. Eng. Perform., 2020, 29(10), p 6455–6467. https://doi.org/10.1007/s11665-020-05165-2

    Article  CAS  Google Scholar 

  29. Y. Liu, L. Ming, H. Luo, W. Liu, Y. Zhang, H. Liu, and Y. **, Integration of a Calcined Bovine Bone and BMSC-Sheet 3D Scaffold and the Promotion of Bone Regeneration In Large Defects, Biomaterials, 2013, 34(38), p 9998–10006. https://doi.org/10.1016/j.biomaterials.2013.09.040

    Article  CAS  Google Scholar 

  30. X. Yu, R. Xu, Z. Zhang, Q. Jiang, Y. Liu, X. Yu, and F. Deng, Different Cell and Tissue Behavior of Micro-/Nano-Tubes and Micro-/Nano-Nets Topographies on Selective Laser Melting Titanium to Enhance Osseointegration, Int. J. Nanomed., 2021, 16, p 3329–3342. https://doi.org/10.2147/ijn.S303770

    Article  CAS  Google Scholar 

  31. L. Zhang, J. Tan, Z.Y. He, and Y.H. Jiang, Effect of Calcium Pyrophosphate on Microstructural Evolution and In Vitro Biocompatibility of Ti-35Nb-7Zr Composite by Spark Plasma Sintering, Mater. Sci. Eng. C Mater. Biol. Appl., 2018, 90, p 8–15. https://doi.org/10.1016/j.msec.2018.04.042

    Article  CAS  Google Scholar 

  32. P. Balbinotti, E. Gemelli, G. Buerger, S.A.D. Lima, J.D. Jesus, N.H.A. Camargo, V.A.R. Henriques, and G.D.D.A. Soares, Microstructure Development on Sintered Ti/HA Biocomposites Produced by Powder Metallurgy, Mater. Res., 2011, 14(3), p 384–393. https://doi.org/10.1590/S1516-14392011005000044

    Article  CAS  Google Scholar 

  33. L. Hao, S. Dadbakhsh, O. Seaman, and M. Felstead, Selective laser Melting of a Stainless Steel and Hydroxyapatite Composite for Load-Bearing Implant Development, J. Mater. Process. Technol., 2009, 209(17), p 5793–5801. https://doi.org/10.1016/j.jmatprotec.2009.06.012

    Article  CAS  Google Scholar 

  34. C.A. Terrazas, L.E. Murr, D. Bermudez, E. Arrieta, D.A. Roberson, and R.B. Wicker, Microstructure and Mechanical Properties of Ti-6Al-4V-5% Hydroxyapatite Composite Fabricated Using Electron Beam Powder Bed Fusion, J. Mater. Sci. Technol., 2019, 35(2), p 309–321. https://doi.org/10.1016/j.jmst.2018.10.025

    Article  CAS  Google Scholar 

  35. Y. Liu, G. Wang, Y. Cai, H. Ji, G. Zhou, X. Zhao, R. Tang, and M. Zhang, In Vitro Effects of Nanophase Hydroxyapatite Particles on Proliferation and Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells, J. Biomed. Mater. Res. A, 2009, 90(4), p 1083–1091. https://doi.org/10.1002/jbm.a.32192

    Article  CAS  Google Scholar 

  36. T.J. Webster, C. Ergun, R.H. Doremus, and W.A. Lanford, Increased Osteoblast Adhesion on Titanium-Coated Hydroxylapatite that Forms CaTiO3, J. Biomed. Mater. Res. A, 2003, 67(3), p 975–980. https://doi.org/10.1002/jbm.a.10160

    Article  CAS  Google Scholar 

  37. X. Yang, Y. Li, X. Liu, R. Zhang, and Q. Feng, In Vitro Uptake of Hydroxyapatite Nanoparticles and Their Effect on Osteogenic Differentiation of Human Mesenchymal Stem Cells, Stem Cells Int., 2018, 2018, p 2036176. https://doi.org/10.1155/2018/2036176

    Article  CAS  Google Scholar 

  38. T. Numata and Y. Okada, Molecular Determinants of Sensitivity and Conductivity of Human TRPM7 to Mg2+ and Ca2+, Channels, 2008, 2(4), p 283–286. https://doi.org/10.4161/chan.2.4.6695

    Article  Google Scholar 

  39. Y. Gao, M.J. Robertson, S.N. Rahman, A.B. Seven, C. Zhang, J.G. Meyerowitz, O. Panova, F.M. Hannan, R.V. Thakker, H. Bräuner-Osborne, J.M. Mathiesen and G. Skiniotis, Asymmetric Activation of the Calcium-Sensing Receptor Homodimer, Nature, 2021, 595(7867), p 455–459. https://doi.org/10.1038/s41586-021-03691-0

    Article  CAS  Google Scholar 

  40. A. González-Vázquez, J.A. Planell, and E. Engel, Extracellular Calcium and CaSR Drive Osteoinduction in Mesenchymal Stromal Cells, Acta Biomater., 2014, 10(6), p 2824–2833. https://doi.org/10.1016/j.actbio.2014.02.004

    Article  CAS  Google Scholar 

  41. N. Lu, X. Wang, W. Shi, L. Bian, X. Zhang, G. Yang, X. Tang, J. Wang, Y. Zou, and Y. Weng, Black Phosphorus Nanoparticles Promote Osteogenic Differentiation of EMSCs Through Upregulated TG2 Expression, Nanoscale Res. Lett., 2021, 16(1), p 154. https://doi.org/10.1186/s11671-021-03610-2

    Article  CAS  Google Scholar 

  42. C. Chu, X. Xue, J. Zhu, and Z. Yin, In Vivo Study on Biocompatibility and Bonding Strength of Ti/Ti–20 vol% HA/Ti–40 vol% HA Functionally Graded Biomaterial with Bone Tissues in the Rabbit, Mater. Sci. Eng. A, 2006, 429(1–2), p 18–24. https://doi.org/10.1016/j.msea.2006.03.099

    Article  CAS  Google Scholar 

  43. X. Wang, C. Wan, X. Feng, F. Zhao, and H. Wang, In Vivo and In Vitro Analyses of Titanium-Hydroxyapatite Functionally Graded Material for Dental Implants, Biomed. Res. Int., 2021, 2021, p 8859945. https://doi.org/10.1155/2021/8859945

    Article  CAS  Google Scholar 

  44. P. Oberbek, T. Bolek, A. Chlanda, S. Hirano, S. Kusnieruk, J. Rogowska-Tylman, G. Nechyporenko, V. Zinchenko, W. Swieszkowski, and T. Puzyn, Characterization and Influence of Hydroxyapatite Nanopowders on Living Cells, Beilstein J. Nanotechnol., 2018, 9, p 3079–3094. https://doi.org/10.3762/bjnano.9.286

    Article  CAS  Google Scholar 

  45. L.L. Song, Y.Q. Qu, Y.P. Tang, X. Chen, H.H. Lo, L.Q. Qu, Y.X. Yun, V.K.W. Wong, R.L. Zhang, H.M. Wang, M.H. Liu, W. Zhang, H.X. Zhang, J.T.W. Chan, C.R. Wang, J.H. Wu, and B.Y.K. Law, Hyperoside Alleviates Toxicity of β-Amyloid Via Endoplasmic Reticulum-Mitochondrial Calcium Signal Transduction Cascade in APP/PS1 Double Transgenic Alzheimer’s Disease Mice, Redox Biol., 2023, 61, p 102637. https://doi.org/10.1016/j.redox.2023.102637

    Article  CAS  Google Scholar 

  46. C. Giorgi, F. Baldassari, A. Bononi, M. Bonora, E. De Marchi, S. Marchi, S. Missiroli, S. Patergnani, A. Rimessi, J.M. Suski, M.R. Wieckowski, and P. Pinton, Mitochondrial Ca2+ and Apoptosis, Cell Calcium, 2012, 52(1), p 36–43. https://doi.org/10.1016/j.ceca.2012.02.008

    Article  CAS  Google Scholar 

  47. Z. Wang, C. Wang, C. Li, Y. Qin, L. Zhong, B. Chen, Z. Li, H. Liu, F. Chang, and J. Wang, Analysis of Factors Influencing Bone Ingrowth into Three-Dimensional Printed Porous Metal Scaffolds: A Review, J. Alloy Compd., 2017, 717, p 271–285. https://doi.org/10.1016/j.jallcom.2017.05.079

    Article  CAS  Google Scholar 

  48. C. Gao, M. Yao, S. Peng, W. Tan, and C. Shuai, Pre-Oxidation Induced In Situ Interface Strengthening in Biodegradable Zn/nano-SiC Composites Prepared by Selective Laser Melting, J. Adv. Res., 2022, 38, p 143–155. https://doi.org/10.1016/j.jare.2021.09.014

    Article  CAS  Google Scholar 

  49. V. Mandal, P. Tripathi, A. Kumar, S.S. Singh, and J. Ramkumar, A Study on Selective Laser Melting (SLM) of TiC and B4C Reinforced IN718 Metal Matrix Composites (MMCs), J. Alloy Compd., 2022, 901, p 17. https://doi.org/10.1016/j.jallcom.2021.163527

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Zhang Chunyu and Ms. Yan Yu of Guangdong Jianchi Biotechnology Company Limited, Dr. Eskandar Fereiduni of McMaster University, and all of the research staff members at the Department of Oral Implantology, Guanghua School of Stomatology, Sun Yat-sen University. This research was funded by the Foshan Science and Technology Innovation Project (No. 2018IT100212) and the Guangdong Provincial Science and Technology Major Project (No. 2017B090912004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feilong Deng or Jianyu Chen.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Ethics Approval

All methods were performed in accordance with the National Research Council’s Guide for the Care and Use of Laboratory Animals. Rabbits included in this study were provided from the Animal Experiment Center of Sun Yat-sen University with the approval number of SYSU-IACUC-2021-000725.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 123 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Balbaa, M., Zeng, W. et al. Osteogenic Properties of Titanium Alloy Ti6Al4V-Hydroxyapatite Composites Fabricated by Selective Laser Melting. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08632-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08632-8

Keywords

Navigation