Log in

Numerical Model for Simulation of Melting and Microstructure Evolution during a Multi-layered Laser Melting Process

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, a numerical model is presented for the simulation of melting and microstructure formation during a layer-by-layer laser melting process. The model couples the solution of thermal and species transport with a sharp-interface enthalpy-based phase change model to track the melting and solidification in each layer. The effect of the moving laser energy source is implemented through a transient moving heat flux boundary condition. Transition from the completion of a layer to the start of a new layer is implemented using a domain translation technique, kee** the size of the computational domain constant. The model captures the remelting of a previous layer during the formation of a new layer. Simulations are performed to predict the segregation and grain structure formation during multi-layered laser melting of Al-10%Cu alloy. It is seen that the laser scan direction governs the grain orientation with grains growing in the direction of laser travel. Also, the remelting of the previously formed grains in the adjacent layer affects the species concentration and grain structure in the subsequent layer. Higher power, lower laser scan speed, and smaller laser radius leads to the formation of longer grains with larger aspect ratio spanning multiple layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The raw/processed data will be available on request.

Abbreviations

A :

Absorptivity

a, b :

Constants

C :

Volume-averaged concentration

C p :

Specific heat (J/kgK)

C m :

Mean concentration

C 0 :

Initial concentration

C ck :

Coefficient of flow resistance source term

D :

Solute diffusivity (m2/s)

f l :

Liquid fraction

h :

Enthalpy (J/kg)

k :

Effective thermal conductivity (W/mK)

k p :

Partition coefficient

L :

Latent heat of fusion (J/kg)

m :

Equilibrium slope of the liquidus line for binary alloy

n :

Nucleation density

n max :

Maximum number of nuclei

p :

Pressure (N/m2)

P :

Laser power (W)

S :

Flow resistance source (N/m3)

S b :

Buoyancy source term in momentum equation (N/m3)

S cr :

Volumetric source term in energy equation (W/m3)

T :

Temperature (K)

T m :

Melting temperature (K)

T i :

Interface temperature (K)

t :

Time (s)

\(\overrightarrow{u}\) :

Velocity (m/s)

v l :

Laser travel speed (m/s)

r 0 :

Laser spot radius (m)

V :

Concentration potential

g :

Acceleration due to gravity (m/s2)

x, y :

Domain axes

\({\beta }_{\mathrm{T}}\) :

Thermal expansion coefficients (K1)

\({\beta }_{\mathrm{S}}\) :

Solutal expansion coefficients

\(\gamma \) :

Surface tension (N/m)

\(\epsilon \) :

Porosity

\(\theta \) :

Interface angle

\(\theta \) r :

Crystallographic orientation of dendrite

\(\kappa \) :

Curvature (m1)

\(\mu \) :

Dynamic viscosity (Pa.s)

ρ :

Density (kg/m3)

Δ T :

Undercooling (K)

Δ T m :

Mean undercooling for nucleation (K)

Δ T σ :

Standard deviation of undercooling for nucleation (K)

σ :

Surface tension coefficient (N/mK)

σ t :

Surface tension (N/m)

l :

Liquid phase

s :

Solid phase

x, y :

With respect to x-axis and y-axis, respectively

References

  1. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A.D. Wilson-Heid, A. De and W. Zhang, Additive Manufacturing of Metallic Components-Process, Structure and Properties, Prog. Mater Sci., 2018, 92, p 112–224.

    Article  CAS  Google Scholar 

  2. D.D. Gu, W. Meiners, K. Wissenbach and R. Poprawe, Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms, Int. Mater. Rev., 2012, 57(3), p 133–164.

    Article  CAS  Google Scholar 

  3. D. Herzog, V. Seyda, E. Wycisk and C. Emmelmann, Additive Manufacturing of Metals, Acta Mater., 2016, 117, p 371–392.

    Article  CAS  Google Scholar 

  4. E.O. Olakanmi, R.F. Cochrane and K.W. Dalgarno, A Review on Selective Laser Sintering/Melting (SLS/SLM) of Aluminium Alloy Powders: Processing, Microstructure, and Properties, Prog. Mater Sci., 2015, 74, p 401–477.

    Article  CAS  Google Scholar 

  5. J.O. Milewski, Additive Manufacturing of Metals, Springer International Publishing, Cham, 2017.

    Book  Google Scholar 

  6. L.N. Carter, X. Wang, N. Read, R. Khan, M. Aristizabal, K. Essa and M.M. Attallah, Process Optimization of Selective Laser Melting Using Energy Density Model for Nickel Based Superalloys, Mater. Sci. Technol., 2016, 32(7), p 657–661.

    Article  CAS  Google Scholar 

  7. C. Qiu, G.A. Ravi and M.M. Attallah, Microstructural Control During Direct Laser Deposition of a β-Titanium Alloy, Mater. Des., 2015, 81, p 21–30.

    Article  CAS  Google Scholar 

  8. J. Zhao, B. Zhang, X. Li and R. Li, Effects of Metal-Vapor Jet Force on the Physical Behavior of Melting Wire Transfer in Electron Beam Additive Manufacturing, J. Mater. Process. Technol., 2015, 220, p 243–250.

    Article  Google Scholar 

  9. P. Heinl, L. Müller, C. Körner, R.F. Singer and F.A. Müller, Cellular Ti-6Al-4V Structures with Interconnected Macro Porosity for Bone Implants Fabricated by Selective Electron Beam Melting, Acta Biomater., 2008, 4(5), p 1536–1544.

    Article  CAS  Google Scholar 

  10. M.J. Bermingham, D. Kent, H. Zhan, D.H. StJohn and M.S. Dargusch, Controlling the Microstructure and Properties of Wire Arc Additive Manufactured Ti-6Al-4V with Trace Boron Additions, Acta Mater., 2015, 91, p 289–303.

    Article  CAS  Google Scholar 

  11. F. Wang, S. Williams, P. Colegrove and A.A. Antonysamy, Microstructure and Mechanical Properties of Wire and Arc Additive Manufactured Ti-6Al-4V, Metall. Mater. Trans. A., 2013, 44(2), p 968–977.

    Article  Google Scholar 

  12. M. Nahmany, I. Rosenthal, I. Benishti, N. Frage and A. Stern, Electron Beam Welding of AlSi10Mg Workpieces Produced by Selected Laser Melting Additive Manufacturing Technology, Addit. Manuf., 2015, 8, p 63–70.

    CAS  Google Scholar 

  13. C.A. Brice and W.H. Hofmeister, Determination Of bulk Residual Stresses in Electron Beam Additive-Manufactured Aluminum, Metall. and Mater. Trans. A., 2013, 44(11), p 5147–5153.

    Article  CAS  Google Scholar 

  14. A. Yadollahi, N. Shamsaei, S.M. Thompson and D.W. Seely, Effects of Process Time Interval and Heat Treatment on the Mechanical and Microstructural Properties of Direct Laser Deposited 316L Stainless Steel, Mater. Sci. Eng., A, 2015, 644, p 171–183.

    Article  CAS  Google Scholar 

  15. M. Garibaldi, I. Ashcroft, M. Simonelli and R. Hague, Metallurgy of High-Silicon Steel Parts Produced Using Selective Laser Melting, Acta Mater., 2016, 110, p 207–216.

    Article  CAS  Google Scholar 

  16. S.M. Kelly and S.L. Kampe, Microstructural Evolution in Laser-Deposited Multilayer Ti-6Al-4V Builds: Part I. Microstructural Characterization, Metallur. Mater. Trans. A, 2004, 35(6), p 1861–1867.

    Article  Google Scholar 

  17. T. Wang, Y.Y. Zhu, S.Q. Zhang, H.B. Tang and H.M. Wang, Grain Morphology evolution Behavior of Titanium Alloy Components During Laser Melting deposition Additive Manufacturing, J. Alloy. Compd., 2015, 632, p 505–513.

    Article  CAS  Google Scholar 

  18. L.N. Carter, M.M. Attallah and R.C. Reed, Laser Powder Bed Fabrication of Nickel-Base Superalloys: Influence of Parameters; Characterization, Quantification and Mitigation of Cracking, Superalloys, 2012, 2012(6), p 2826–2834.

    Google Scholar 

  19. L.E. Murr, E. Martinez, X.M. Pan, S.M. Gaytan, J.A. Castro, C.A. Terrazas, F. Medina, R.B. Wicker and D.H. Abbott, Microstructures of Rene 142 Nickel-Based Superalloy Fabricated by Electron Beam Melting, Acta Mater., 2013, 61(11), p 4289–4296.

    Article  CAS  Google Scholar 

  20. W. Liu, K.M. Saleheen, Z. Tang, H. Wang, G. Al-Hammadi, A. Abdelrahman, Z. Yongxin, S.G. Hua and F. Wang, Review on Scanning Pattern Evaluation in Laser-Based Additive Manufacturing, Opt. Eng., 2021, 60(7), p 070901.

    Article  CAS  Google Scholar 

  21. S. Das, Physical Aspects of Process Control in Selective Laser Sintering of Metals, Adv. Eng. Mater., 2003, 5(10), p 701–711.

    Article  CAS  Google Scholar 

  22. W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah and A.M. Rubenchik, Laser Powder Bed Fusion Additive Manufacturing of Metals; Physics, Computational, and Materials Challenges, Appl. Phys. Rev., 2015, 2(4), p 041304.

    Article  Google Scholar 

  23. S.M. Thompson, L. Bian, N. Shamsaei and A. Yadollahi, An Overview of Direct Laser Deposition for Additive Manufacturing; Part I: Transport Phenomena, Modeling and Diagnostics, Addit. Manuf., 2015, 8, p 36–62.

    Google Scholar 

  24. L.M. Sochalski-Kolbus, E.A. Payzant, P.A. Cornwell, T.R. Watkins, S.S. Babu, R.R. Dehoff, M. Lorenz, O. Ovchinnikova and C. Duty, Comparison of Residual Stresses in Inconel 718 Simple Parts Made by Electron Beam Melting and direct Laser Metal Sintering, Metall. and Mater. Trans. A., 2015, 46(3), p 1419–1432.

    Article  CAS  Google Scholar 

  25. R. Rai, J.W. Elmer, T.A. Palmer and T. DebRoy, Heat Transfer and Fluid Flow During Keyhole Mode Laser Welding of Tantalum, Ti-6Al-4V, 304L Stainless steel and Vanadium, J. Phys. D Appl. Phys., 2007, 40(18), p 5753.

    Article  CAS  Google Scholar 

  26. M.M. Collur, A. Paul and T. DebRoy, Mechanism of Alloying Element Vaporization During Laser Welding, Metall. Trans. B, 1987, 18(4), p 733–740.

    Article  Google Scholar 

  27. H. Qi, J. Mazumder and H. Ki, Numerical Simulation of Heat Transfer and Fluid Flow in Coaxial Laser Cladding Process for Direct Metal Deposition, J. Appl. Phys., 2006, 100(2), p 024903.

    Article  Google Scholar 

  28. Y. Chew, J.H.L. Pang, G. Bi and B. Song, Thermo-Mechanical Model for Simulating Laser Cladding Induced Residual Stresses with Single and Multiple Clad Beads, J. Mater. Process. Technol., 2015, 224, p 89–101.

    Article  CAS  Google Scholar 

  29. Z. Liu, D. Zhao, P. Wang, M. Yan, C. Yang, Z. Chen, J. Lu and Z. Lu, Additive Manufacturing of Metals: Microstructure Evolution and Multistage Control, J. Mater. Sci. Technol., 2022, 100, p 224–236.

    Article  CAS  Google Scholar 

  30. C. Du, Y. Zhao, J. Jiang, Q. Wang, H. Wang, N. Li and J. Sun, Pore Defects in Laser Powder Bed Fusion: Formation Mechanism, Control Method, and Perspectives, Journal of Alloys and Compounds, 2023, 944, p 169215.

    Article  CAS  Google Scholar 

  31. W. Wang and S.Y. Liang, Prediction of Molten Pool Height, Contact Angle, and Balling Occurrence in Laser Powder Bed Fusion, Int. J. Adv. Manuf. Technol., 2022, 119(9–10), p 6193–6202.

    Article  Google Scholar 

  32. G. Li, X. Li, C. Guo, Y. Zhou, Q. Tan, W. Qu, X. Li, X. Hu, M. Zhang and Q. Zhu, Investigation into the Effect of Energy Density on Densification, Surface Roughness and Loss of Alloying Elements of 7075 Aluminium Alloy Processed by Laser Powder Bed Fusion, Opt. Laser Technol., 2022, 147, p 107621.

    Article  CAS  Google Scholar 

  33. J.J. Rindler, C.E. Slone, E.D. Herderick, M.J. Mills and A.J. Ramirez, Investigation on the Potential Effects of Laser Stitching and Subsequent Heat Treatment on the Microstructure and Mechanical Properties of Nickel Alloy 718 Produced via Laser Powder Bed Fusion (L-PBF), Addit. Manuf., 2022, 57, p 102906.

    CAS  Google Scholar 

  34. H. **a, L. Li, C. Tan, J. Yang, H. Li, W. Song, K. Zhang, Q. Wang and N. Ma, In Situ SEM Study on Tensile Fractured Behavior of Al/Steel Laser Welding-Brazing Interface, Mater. Des., 2022, 224, p 111320.

    Article  CAS  Google Scholar 

  35. B. Chen, Z. Wu, T. Yan, Z. He, B. Sun, G. Guo and S. Wu, Experimental Study on Mechanical Properties of Laser Powder Bed Fused Ti-6Al-4V Alloy Under Post-Heat Treatment, Eng. Fract. Mech., 2022, 261, p 108264.

    Article  Google Scholar 

  36. S. Kou, Welding Metallurgy, New Jersey USA, 2003, 431(446), p 223–225.

    Google Scholar 

  37. V. Ocelík, I. Furár and J.T.M. De Hosson, Microstructure and Properties of Laser Clad Coatings Studied by Orientation Imaging Microscopy, Acta Mater., 2010, 58(20), p 6763–6772.

    Article  Google Scholar 

  38. S.A. David and J.M. Vitek, Correlation Between Solidification Parameters and Weld Microstructures, Int. Mater. Rev., 1989, 34(1), p 213–245.

    Article  CAS  Google Scholar 

  39. M. Rappaz and C.A. Gandin, Probabilistic Modelling of Microstructure Formation in Solidification Processes, Acta Metall. Mater., 1993, 41(2), p 345–360.

    Article  CAS  Google Scholar 

  40. W. Kurz, B. Giovanola and R. Trivedi, Theory of Microstructural Development During Rapid Solidification, Acta Metall., 1986, 34(5), p 823–830.

    Article  CAS  Google Scholar 

  41. O. Hunziker, D. Dye and R.C. Reed, On the Formation of a Centreline Grain Boundary During Fusion Welding, Acta Mater., 2000, 48(17), p 4191–4201.

    Article  CAS  Google Scholar 

  42. L. Thijs, K. Kempen, J.P. Kruth and J. Van Humbeeck, Fine-Structured Aluminium Products with Controllable Texture by Selective Laser Melting of Pre-Alloyed AlSi10Mg Powder, Acta Mater., 2013, 61(5), p 1809–1819.

    Article  CAS  Google Scholar 

  43. B. Richter, N. Blanke, C. Werner, N.D. Parab, T. Sun, F. Vollertsen and F.E. Pfefferkorn, High-Speed X-ray Investigation of Melt Dynamics During Continuous-Wave Laser Remelting of Selective Laser Melted Co-Cr Alloy, CIRP Ann., 2019, 68(1), p 229–232.

    Article  Google Scholar 

  44. J. Vaithilingam, R.D. Goodridge, R.J. Hague, S.D. Christie and S. Edmondson, The Effect of Laser Remelting on the Surface Chemistry of Ti6al4V Components Fabricated by Selective Laser Melting, J. Mater. Process. Technol., 2016, 232, p 1–8.

    Article  CAS  Google Scholar 

  45. E.G. Brodie, A.E. Medvedev, J.E. Frith, M.S. Dargusch, H.L. Fraser and A. Molotnikov, Remelt Processing and Microstructure of Selective Laser Melted Ti25Ta, J. Alloy. Compd., 2020, 820, p 153082.

    Article  CAS  Google Scholar 

  46. B. Liu, B.Q. Li and Z. Li, Selective Laser Remelting of an Additive Layer Manufacturing Process on AlSi10Mg, Results in Physics, 2019, 12, p 982–988.

    Article  Google Scholar 

  47. A. Boschetto, L. Bottini and D. Pilone, Effect of Laser Remelting on Surface Roughness and Microstructure of AlSi10Mg Selective Laser Melting Manufactured Parts, Int. J. Adv. Manuf. Technol., 2021, 113(9), p 2739–2759.

    Article  Google Scholar 

  48. Z. **ong, P. Zhang, C. Tan, D. Dong, W. Ma and K. Yu, Selective Laser Melting and Remelting of Pure Tungsten, Adv. Eng. Mater., 2020, 22(3), p 1901352.

    Article  CAS  Google Scholar 

  49. M. Okugawa, Y. Ohigashi, Y. Furishiro, Y. Koizumi and T. Nakano, Equiaxed Grain Formation by Intrinsic Heterogeneous Nucleation via Rapid Heating and Cooling in Additive Manufacturing of Aluminum-Silicon Hypoeutectic Alloy, J. Alloys Compd., 2022, 919, p 165812.

    Article  CAS  Google Scholar 

  50. M. Shiomi, A. Yoshidome, F. Abe and K. Osakada, Finite Element Analysis of Melting and Solidifying Processes in Laser Rapid Prototy** of Metallic Powders, Int. J. Mach. Tools Manuf, 1999, 39(2), p 237–252.

    Article  Google Scholar 

  51. N.K. Tolochko, M.K. Arshinov, A.V. Gusarov, V.I. Titov, T. Laoui and L. Froyen, Mechanisms of Selective laser Sintering and Heat Transfer in Ti Powder, Rapid Prototyp. J., 2003, 9(5), p 314–326.

    Article  Google Scholar 

  52. K. Dai and L. Shaw, Thermal and Mechanical Finite Element Modeling of Laser forming from Metal and Ceramic Powders, Acta Mater., 2004, 52(1), p 69–80.

    Article  CAS  Google Scholar 

  53. H. Yin and S.D. Felicelli, Dendrite Growth Simulation During Solidification in the LENS Process, Acta Mater., 2010, 58(4), p 1455–1465.

    Article  CAS  Google Scholar 

  54. Z. Liu and H. Qi, Numerical Simulation of Transport Phenomena for a Double-Layer Laser Powder Deposition of Single-Crystal Superalloy, Metall. and Mater. Trans. A., 2014, 45(4), p 1903–1915.

    Article  CAS  Google Scholar 

  55. A. Rai, M. Markl and C. Körner, A Coupled Cellular Automaton-Lattice Boltzmann Model for Grain Structure Simulation During Additive Manufacturing, Comput. Mater. Sci., 2016, 124, p 37–48.

    Article  Google Scholar 

  56. A. Rai, H. Helmer and C. Körner, Simulation of Grain Structure Evolution During Powder Bed Based Additive Manufacturing, Addit. Manuf., 2017, 13, p 124–134.

    Google Scholar 

  57. A. Zinoviev, O. Zinovieva, V. Ploshikhin, V. Romanova and R. Balokhonov, Evolution of Grain Structure During Laser Additive Manufacturing. Simulation by a Cellular Automata Method, Mater. Des., 2016, 106, p 321–329.

    Article  Google Scholar 

  58. J. Zhang, F. Liou, W. Seufzer and K. Taminger, A Coupled Finite Element Cellular Automaton Model to Predict Thermal History and Grain Morphology of Ti-6Al-4V During Direct Metal Deposition (DMD), Addit. Manuf., 2016, 11, p 32–39.

    CAS  Google Scholar 

  59. T.M. Rodgers, J.D. Madison and V. Tikare, Simulation of Metal Additive Manufacturing Microstructures Using Kinetic Monte Carlo, Comput. Mater. Sci., 2017, 135, p 78–89.

    Article  Google Scholar 

  60. J.G. Pauza, W.A. Tayon and A.D. Rollett, Computer Simulation of Microstructure Development in Powder-Bed Additive Manufacturing with Crystallographic Texture, Modell. Simul. Mater. Sci. Eng., 2021, 29(5), p 055019.

    Article  Google Scholar 

  61. S. Sahoo and K. Chou, Phase-Field Simulation of Microstructure Evolution of Ti-6Al-4V in Electron Beam Additive Manufacturing Process, Addit. Manuf., 2016, 9, p 14–24.

    CAS  Google Scholar 

  62. Sethian, J. A. (1996). Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics. Computer Vision, and Materials Science.

  63. V.R. Voller, An Enthalpy Method for Modeling Dendritic Growth in a Binary Alloy, Int. J. Heat Mass Transf., 2008, 51(3–4), p 823–834.

    Article  CAS  Google Scholar 

  64. M. Jegatheesan and A. Bhattacharya, An Enthalpy Based Model for Microstructure Evolution During Binary Alloy Solidification, Comput. Mater. Sci., 2021, 186, p 110072.

    Article  CAS  Google Scholar 

  65. A. Bhattacharya and P. Dutta, An Enthalpy-Based Model of Dendritic Growth in a Convecting Binary Alloy Melt, Int. J. Numer. Methods Heat Fluid Flow., 2013, 23, p 1121–1135.

    Article  Google Scholar 

  66. A. Swain, P.M. Khan, P. Rath and A. Bhattacharya, Modeling Layer-by-Layer Laser Melting and Solidification of Binary Alloy Powder Bed, J. Laser Appl., 2021, 33(4), p 042040.

    Article  CAS  Google Scholar 

  67. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, CRC Press, 2018.

    Book  Google Scholar 

  68. L.L. Parimi, G.A. Ravi, D. Clark and M.M. Attallah, Microstructural and Texture Development in Direct Laser Fabricated IN718, Mater. Charact., 2014, 89, p 102–111.

    Article  CAS  Google Scholar 

  69. F. Xu, F. **ong, M.J. Li and Y. Lian, Three-Dimensional Numerical Simulation of Grain Growth during Selective Laser Melting of 316L Stainless Steel, Materials, 2022, 15(19), p 6800.

    Article  CAS  Google Scholar 

  70. H.L. Wei, J. Mazumder and T. DebRoy, Evolution of Solidification Texture During Additive Manufacturing, Sci. Rep., 2015, 5(1), p 1–7.

    Article  Google Scholar 

  71. H.L. Wei, J.W. Elmer and T. DebRoy, Three-Dimensional Modeling of Grain Structure Evolution During Welding of an Aluminum Alloy, Acta Mater., 2017, 126, p 413–425.

    Article  CAS  Google Scholar 

  72. A.R.A. Dezfoli, W.S. Hwang, W.C. Huang and T.W. Tsai, Determination and Controlling of Grain Structure of Metals After Laser Incidence: Theoretical Approach, Sci. Rep., 2017, 7(1), p 41527.

    Article  CAS  Google Scholar 

  73. E. Jelis, M.R. Hespos, M. Feurer and S. Groeschler, Development of Laser Powder Bed Fusion Processing Parameters for Aermet 100 Powder, J. Mater. Eng. Perform., 2022 https://doi.org/10.1007/s11665-022-07638-y

    Article  Google Scholar 

  74. L.E. Criales, Y.M. Arısoy, B. Lane, S. Moylan, A. Donmez and T. Özel, Laser Powder Bed Fusion of Nickel Alloy 625: Experimental Investigations of Effects of Process Parameters on Melt Pool Size and Shape with Spatter Analysis, Int. J. Mach. Tools Manuf, 2017, 121, p 22–36.

    Article  Google Scholar 

  75. S.K. Nayak, S.K. Mishra, A.N. **oop, C.P. Paul and K.S. Bindra, Experimental Studies on Laser Additive Manufacturing of Inconel-625 Structures Using Powder Bed Fusion at 100 µm Layer Thickness, J. Mater. Eng. Perform., 2020, 29, p 7636–7647.

    Article  CAS  Google Scholar 

  76. T.M. Wischeropp, H. Tarhini and C. Emmelmann, Influence of Laser Beam Profile on the Selective Laser Melting Process of AlSi10Mg, J. Laser Appl., 2020, 32(2), p 022059.

    Article  CAS  Google Scholar 

  77. Z. Sun, X. Tan, S.B. Tor and W.Y. Yeong, Selective Laser Melting of Stainless Steel 316L with Low Porosity and High Build Rates, Mater. Des., 2016, 104, p 197–204.

    Article  CAS  Google Scholar 

  78. M.C. Sow, T. De Terris, O. Castelnau, Z. Hamouche, F. Coste, R. Fabbro and P. Peyre, Influence of Beam Diameter on Laser Powder Bed Fusion (L-PBF) Process, Addit. Manuf., 2020, 36, p 101532.

    CAS  Google Scholar 

Download references

Funding

This work has been funded and supported by DST (Department of Science and Technology) SERB Project no. ECR/2017/002440.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Bhattacharya.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, A., Jegatheesan, M., Jakhar, A. et al. Numerical Model for Simulation of Melting and Microstructure Evolution during a Multi-layered Laser Melting Process. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08519-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08519-8

Keywords

Navigation