Log in

Properties of Porous Mullite Filter Material Fabricated from Reaction Sintered Mullite Grains

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This research investigates the fabrication of porous mullite filter material from reaction sintered mullite grains for high-temperature applications. Current filter types are not suitable for application in high-temperature and corrosive environments despite their high porosity. Acicular Mullite Ceramics are known for their highly porous microstructures with excellent mechanical integrity. Fabrication of a rod-like porous mullite filter from mullite grains produced from pyrophyllite clay and Al2O3 via reaction sintering was investigated. Pure mullite phase was produced at 1600 °C, and the use of a binder and foaming agent helped to obtain a porous structure. Above 1700 °C, acicular mullite grain growth via two-dimensional heterogeneous nucleation was promoted. A friable and structurally poor material was produced at temperatures just below 1800 °C. Above 1800 °C, the structural integrity of the ceramic material was improved. The measured total porosity and average pore diameter at 1800 °C were 36.20% and 29.32 µm, respectively. The measured density was 1.99 g/cm3, and the average compressive strength was 12.60 MPa. The characteristic strength was 14.49 MPa, with a Weibull modulus of 2.67.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A. Pyzik, R. Ziebarth, C. Han, and K. Yang, High-Porosity Acicular Mullite Ceramics for Multifunctional Diesel Particulate Filters, Int. J. Appl. Ceram. Technol., 2011, 8(5), p 1059–1066.

    Article  CAS  Google Scholar 

  2. F. Zuo, S. Zhang, H. Liu, H. Fong, X. Yin, J. Yu, and B. Ding, Free-standing Polyurethane Nanofiber/Nets Air Filters for Effective PM Capture, Small., 2017, 13(46), p 1702139.

    Article  Google Scholar 

  3. R. **ong, G. Sun, K. Si, Q. Liu, and K. Liu, Pressure Drop Prediction of Ceramic Membrane Filters at High Temperature, Powder Technol., 2020, 364, p 647–653.

    Article  CAS  Google Scholar 

  4. K. He and L. Wang, A Review of Energy Use and Energy-Efficient Technologies for the Iron and Steel Industry, Renew. Sustain. Energy Rev., 2017, 70, p 1022–1039.

    Article  Google Scholar 

  5. H. Wang, S. Lin, S. Yang, X. Yang, J. Song, D. Wang, H. Wang, Z. Liu, B. Li, and M. Fang, High-temperature Particulate Matter Filtration with Resilient Yttria-stabilized ZrO2 Nanofiber Sponge, Small, 2018, 14(19), p 1800258.

    Article  Google Scholar 

  6. R. Zhang, C. Liu, P.-C. Hsu, C. Zhang, N. Liu, J. Zhang, H.R. Lee, Y. Lu, Y. Qiu, and S. Chu, Nanofiber Air Filters with High-Temperature Stability for Efficient PM2.5 Removal from the Pollution Sources, Nano Lett., 2016, 16(6), p 3642–3649.

    Article  CAS  Google Scholar 

  7. S. Heidenreich, Hot Gas Filtration–A Review, Fuel, 2013, 104, p 83–94. https://doi.org/10.1016/j.fuel.2012.07.059

    Article  CAS  Google Scholar 

  8. A.R. Barron, “H. Schneider, K. Okada, and J. Pask. Mullite and Mullite Ceramics Wiley, Chichester, 1994, ISBN 0‐471‐94249‐9. In: Advanced Materials for Optics and Electronics, Wiley 1995. pp 251

  9. B.A. Latella, L. Henkel, and E.G. Mehrtens, Permeability and High Temperature Strength of Porous Mullite-Alumina Ceramics for Hot Gas Filtration, J. Mater. Sci., 2006, 41(2), p 423–430.

    Article  CAS  Google Scholar 

  10. E.H. Tanabe, P.M. Barros, K.B. Rodrigues, and M.L. Aguiar, Experimental Investigation of Deposition and Removal of Particles during Gas Filtration with Various Fabric Filters, Sep. Purif. Technol., 2011, 80(2), p 187–195.

    Article  CAS  Google Scholar 

  11. K.-S. Lee, J.-R. Sohn, and Y.-O. Park, Filtration Performance Characteristics of Ceramic Candle Filter Based on Inlet Structure of High-Temperature and High-Pressure Dust Collectors, J. Ind. Eng. Chem., 2015, 21, p 101–110.

    Article  CAS  Google Scholar 

  12. Y.-S. Chen, C.-J. Hsu, S.-S. Hsiau, and S.-M. Ma, Clean Coal Technology for Removal Dust Using Moving Granular Bed Filter, Energy, Elsevier, 2017, 120, p 441–449.

    CAS  Google Scholar 

  13. F. Wang, S. Hao, B. Dong, N. Ke, N.Z. Khan, L. Hao, L. Yin, X. Xu, and S. Agathopoulos, Porous-Foam Mullite-Bonded SiC-Ceramic Membranes for High-Efficiency High-Temperature Particulate Matter Capture, J. Alloys Compd., 2022, 893, p 162231.

    Article  CAS  Google Scholar 

  14. I.S. Hwang, J.-T. Park, and Y.L. Lee, Feasibility of a Porous Ceramic Filter for Collecting Brake Fine Dust, Int. J. Automot. Technol., 2022, 23(2), p 521–527.

    Article  Google Scholar 

  15. S. Li, H. Du, A. Guo, H. Xu, and D. Yang, Preparation of Self-Reinforcement of Porous Mullite Ceramics through in Situ Synthesis of Mullite Whisker in Flyash Body, Ceram. Int., 2012, 38(2), p 1027–1032.

    Article  CAS  Google Scholar 

  16. A. Barron, H. Scheinder, K. Okada, and J.A. Pask, Mullite and Mullite Ceramics, Adv. Mater. Opt. Electron., 1995, 5(5), p 284.

    Article  CAS  Google Scholar 

  17. H. Schneider, J. Schreuer, and B. Hildmann, Structure and Properties of Mullite-A Review, J. Eur. Ceram. Soc., 2008, 28(2), p 329–344.

    Article  CAS  Google Scholar 

  18. S. Pani, R.K. Sahoo, N. Dash, S.K. Singh, and B.K. Mohapatra, Cost Effective and Minimal Time Synthesis of Mullite from a Mine Waste by Thermal Plasma Process, Adv. Mater. Lett., 2015, 6(4), p 318–323.

    Article  CAS  Google Scholar 

  19. V. Viswabaskaran, F.D. Gnanam, and M. Balasubramanian, Mullitisation Behaviour of South Indian Clays, Ceram. Int., 2002, 28(5), p 557–564.

    Article  CAS  Google Scholar 

  20. J. Aguilar-Santillan, H. Balmori-Ramirez, and R.C. Bradt, Dense Mullite from Attrition Milled Kyanite and α-Alumina, J. Ceram. Process. Res., 2007, 8(1), p 1–11.

    Google Scholar 

  21. L. Zhou, Z. Li, and Y. Zhu, Porous Silica/Mullite Ceramics Prepared by Foam-Gelcasting Using Silicon Kerf Waste as Raw Material, Mater. Lett., 2019, 239, p 67–70.

    Article  CAS  Google Scholar 

  22. R. Liu and D. **ang, Recycling Photovoltaic Silicon Waste for Fabricating Porous Mullite Ceramics by Low-Temperature Reaction Sintering, J. Eur. Ceram. Soc., 2021, 41(12), p 5957–5966.

    Article  CAS  Google Scholar 

  23. A.N. Chen, J.Y. Chen, J.M. Wu, L.J. Cheng, R.Z. Liu, J. Liu, Y. Chen, C.H. Li, S.F. Wen, and Y.S. Shi, Porous Mullite Ceramics with Enhanced Mechanical Properties Prepared by SLS Using MnO2 and Phenolic Resin Coated Double-Shell Powders, Ceram. Int., 2019, 45(17), p 21136–21143.

    Article  CAS  Google Scholar 

  24. C.O. Hulse and R.B. Graf, Effect of Temperature on the Mechanical Properties of Solid Pressure-Transmitting Media. II. Pyrophyllite, J. Appl. Phys., 1965, 36(5), p 1593–1596.

    Article  Google Scholar 

  25. T.K. Mukhopadhyay, S. Ghatak, and H.S. Maiti, Effect of Pyrophyllite on the Mullitization in Triaxial Porcelain System, Ceram. Int., 2009, 35(4), p 1493–1500.

    Article  CAS  Google Scholar 

  26. K.C. Rieger, Pyrophyllite, Am. Ceram. Soc. Bull., 1992, 71(5), p 500.

    Google Scholar 

  27. R. Sule and I. Sigalas, Influence of Excess Alumina on Mullite Synthesized from Pyrophyllite by Spark Plasma Sintering, Clay Miner., 2020, 55(2), p 166–171.

    Article  CAS  Google Scholar 

  28. F. Wang, J. Ye, G. He, G. Liu, Z. **e, and J. Li, Preparation and Characterization of Porous MgAl2O4 Spinel Ceramic Supports from Bauxite and Magnesite, Ceram. Int., 2015, 41(6), p 7374–7380.

    Article  CAS  Google Scholar 

  29. Z. Sun, J. Fan, and F. Yuan, Three-Dimensional Porous Silica Ceramics with Tailored Uniform Pores: Prepared by Inactive Spheres, J. Eur. Ceram. Soc., 2015, 35(13), p 3559–3566.

    Article  CAS  Google Scholar 

  30. S. Hashimoto, S. Honda, T. Hiramatsu, and Y. Iwamoto, Fabrication of Porous Spinel (MgAl2O4) from Porous Alumina Using a Template Method, Ceram. Int., 2013, 39(2), p 2077–2081.

    Article  CAS  Google Scholar 

  31. Z. Hou, H. Du, J. Liu, R. Hao, X. Dong, and M. Liu, Fabrication and Properties of Mullite Fiber Matrix Porous Ceramics by a TBA-Based Gel-Casting Process, J. Eur. Ceram. Soc., 2013, 33(4), p 717–725.

    Article  CAS  Google Scholar 

  32. R. Liu, J. Yuan, and W. Changan, A Novel Way to Fabricate Tubular Porous Mullite Membrane Supports by TBA-Based Freezing Casting Method, J. Eur. Ceram. Soc., 2013, 33(15–16), p 3249–3256.

    Article  Google Scholar 

  33. H. Guo, W. Li, and F. Ye, Low-Cost Porous Mullite Ceramic Membrane Supports Fabricated from Kyanite by Casting and Reaction Sintering, Ceram. Int., 2016, 42(4), p 4819–4826.

    Article  CAS  Google Scholar 

  34. A. Standard, C1424-15” Standard Test Method for Monotonic Compressive Strength of Advanced Ceramics at Ambient Temperature, ASTM Int. West Conshohocken, PA, USA, 2015.

  35. Y. Man, X. Luo, Z. **e, D. Qu, and S. **, Influence of 3D Printed Topological Structure on Lightweight Mullite Load Bearing Board in Thermal Environment, Adv. Mater. Sci. Eng., 2020, 2020, p 1–8.

    Article  Google Scholar 

  36. J.A. Pask, Importance of Starting Materials on Reactions and Phase Equilibria in the Al2O3-SiO2 System, J. Eur. Ceram. Soc., 1996, 16(2), p 101–108.

    Article  CAS  Google Scholar 

  37. D. Pereira, G.R.S. Biasibetti, R.V. Camerini, and A.S. Pereira, Sintering of Mullite by Different Methods, Mater. Manuf. Process., 2014, 29(4), p 391–396.

    Article  CAS  Google Scholar 

  38. K.C. Liu, G. Thomas, A. Caballero, J.S. Moya, and S. Deaza, Mullite Formation in Kaolinite-Alpha-Alumina, Acta Metall. Mater., 1994, 42(2), p 489–495.

    Article  CAS  Google Scholar 

  39. D. Pereira, G.R.S. Biasibetti, R.V. Camerini, and A.S. Pereira, Sintering of Mullite by Different Methods, Mater. Manuf. Process., 2014, 29, p 391–396.

    Article  CAS  Google Scholar 

  40. H.S. Tripathi, A. Ghosh, M.K. Halder, B. Mukherjee, and H.S. Maiti, Microstructure and Properties of Sintered Mullite Developed from Indian Bauxite, Bull. Mater. Sci., 2012, 35(4), p 639–643.

    Article  CAS  Google Scholar 

  41. R.L. Coble and W.D. Kingery, Effect of Porosity on Physical Properties of Sintered Alumina, J. Am. Ceram. Soc., 1956, 39(11), p 377–385.

    Article  Google Scholar 

  42. S. Meille and E.J. Garboczi, Linear Elastic Properties of 2D and 3D Models of Porous Materials Made from Elongated Objects, Model. Simul. Mater. Sci. Eng., 2001, 9(5), p 371–390.

    Article  Google Scholar 

  43. B.L. Metcalfe, The Synthesis, Microstructure and Physical Properties of High Purity Mullite, Trans. J. Brit. Ceram. Soc., 1975, 74, p 193–201.

    CAS  Google Scholar 

  44. T. Huang, M.N. Rahaman, T. Mah, and T.A. Parthasarathay, Anisotropic Grain Growth and Microstructural Evolution of Dense Mullite above 1550 C, J. Am. Ceram. Soc., 2000, 83(1), p 204–210.

    Article  CAS  Google Scholar 

  45. S. Aramaki and R. Roy, Revised Phase Diagram for the System Al2O3-SiO2, J. Am. Ceram. Soc., 1962, 45(5), p 229–242.

    Article  CAS  Google Scholar 

  46. A. Aksaf and J.A. Pask, Stable and Metastable Equilibria in the System SiO2-Al2O3, J. Am. Ceram. Soc., 1975, 58(11–12), p 507–512.

    Article  Google Scholar 

  47. H. Guo and W. Li, Effects of Al2O3 Crystal Types on Morphologies, Formation Mechanisms of Mullite and Properties of Porous Mullite Ceramics Based on Kyanite, J. Eur. Ceram. Soc., 2018, 38(2), p 679–686.

    Article  CAS  Google Scholar 

  48. D. Goski, Reaction Sintering of Kyanite and Alumina to Form Mullite Composites, Canad. Metall. Quart., 1999, 38(2), p 119–126. https://doi.org/10.1016/S0008-4433(98)00041-X

    Article  CAS  Google Scholar 

  49. D. Michel, L. Mazerolles, and R. Portier, Directional Solidification in the Alumina--Silica System Microstructures and Interfaces, Mullite mullite matrix Compos., 1987, p 435–447.

  50. J. Ylä-Jääski and H.-U. Nissen, Investigation of Superstructures in Mullite by High Resolution Electron Microscopy and Electron Diffraction, Phys. Chem. Miner., 1983, 10(2), p 47–54.

    Article  Google Scholar 

  51. B. Dong, Z. Min, L. Guan, X. Zheng, L. Wang, Q. Wang, C. Yin, Y. Wang, R. Zhang, F. Wang, H. Abadikhah, X. **n, Y. Zhang, and G. Wang, Porous Mullite-Bonded SiC Filters Prepared by Foaming-Sol-Gel-Tape Casting for High-Efficiency Hot Flue Gas Filtration, Separat. Purificat. Technol., 2022, 295, p 121338. https://doi.org/10.1016/j.seppur.2022.121338

    Article  CAS  Google Scholar 

  52. J. Zheng and J.S. Reed, Particle and Granule Parameters Affecting Compaction Efficiency in Dry Pressing, J. Am. Ceram. Soc., 1988, 71(11), p C456–C458.

    Article  CAS  Google Scholar 

  53. R. Taktak, S. Baklouti, and J. Bouaziz, Effect of Binders on Microstructural and Mechanical Properties of Sintered Alumina, Mater. Charact., 2011, 62(9), p 912–916. https://doi.org/10.1016/j.matchar.2011.06.011

    Article  CAS  Google Scholar 

  54. R. Zhang, C. Ye, X. Hou, S. Li, and B. Wang, Microstructure and Properties of Lightweight Fibrous Porous Mullite Ceramics Prepared by Vacuum Squeeze Moulding Technique, Ceram. Int., 2016, 42(13), p 14843–14848. https://doi.org/10.1016/j.ceramint.2016.06.118

    Article  CAS  Google Scholar 

  55. D. Wu, J. Zhou, and Y. Li, Unbiased Estimation of Weibull Parameters with the Linear Regression Method, J. Eur. Ceram. Soc., 2006, 26(7), p 1099–1105. https://doi.org/10.1016/j.jeurceramsoc.2005.01.044

    Article  CAS  Google Scholar 

  56. R. Bermejo, P. Supancic, and R. Danzer, Influence of Measurement Uncertainties on the Determination of the Weibull Distribution, J. Eur. Ceram. Soc., 2012, 32(2), p 251–255.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the University of the Witwatersrand; the Microscopy and Microanalysis Unit (MMU) for XRD; Mr Nelwalani for SEM analysis and DST-NRF Centre of Excellence (CoE) in Strong Materials for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nthabiseng Ntholeng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ntholeng, N., Rokebrand, P., Mphasha, N.P. et al. Properties of Porous Mullite Filter Material Fabricated from Reaction Sintered Mullite Grains. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08462-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08462-8

Keywords

Navigation