Log in

Tolerability of Fe35Ni35Cr20Mn10 Multi-principal-component Alloy to Impurity Elements

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Two nominal Fe35Ni35Cr20Mn10 (in at.%) multi-principal-component alloys (MCAs) were prepared in vacuum-induction furnace with industrial purity (IP, > 98.5wt.%) and high-purity (HP, > 99.5wt.%) raw metals, respectively. The microstructure was characterized by XRD, SEM and TEM. Tensile mechanical properties and continual plastic deformation ability of them after hot-forging + homogenization annealing were examined by tensile test and continuous cold rolling test. For IP-MCA, the content of “impurity” elements (other elements excluding Fe, Ni, Cr and Mn) is high to 1.68wt.%. However, only single-FCC phase is detected by XRD and no any second phase particles are observed by SEM and TEM, just like that in HP-MCA with an impurity content of 0.4wt.%. It is interesting to find that IP-MCA possesses the equally excellent strength and elongation like HP-MCA. Cold rolling examination indicates that the sheet of IP-MCA with a thickness of 14.0 mm can be continuously rolled to a thin-strip of 0.35 mm. This exhibits an extremely excellent continuous plastic deformation ability, like HP-MAC. Thus, due to much lower cost, IP-MCA can be reliably step toward manufacturing industrial productions. Due to the tortile lattice in physic process for a give MCA system, the tolerability to impurity elements is thought to be large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No additional data are available.

References

  1. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 375(10), p 213–218.

    Article  Google Scholar 

  2. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303.

    Article  CAS  Google Scholar 

  3. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Ahmen, P.K. Liaw, and Z.P. Lu, Microstructures and Properties of High-Entropy Alloys, Prog. Mater. Sci., 2014, 61(10), p 1–93.

    Article  Google Scholar 

  4. E.J. Pickering and N.G. Jones, High-Entropy Alloys: A Critical Assessment of Their Founding Principles and Future Prospects, Int. Mater. Rev., 2016, 61(3), p 183–202.

    Article  CAS  Google Scholar 

  5. P. Edalati, R. Floriano, Y. Tang, A. Mohammadi, K.D. Pereira, A.D. Luchessi, and K. Edalati, Ultrahigh Hardness and Biocompatibility of High-Entropy Alloy TiAlFeCoNi Processed by High-Pressure Torsion, Mater. Sci. Eng. C, 2020, 112(11), p 110908.

    Article  CAS  Google Scholar 

  6. J. Joseph, N. Haghdadi, M. Annasamy, S. Kada, P.D. Hodgson, M.R. Barnett, and D.M. Fabijanic, On the Enhanced Wear Resistance of CoCrFeMnNi High Entropy Alloy at Intermediate Temperature, Scr. Mater., 2020, 186(5), p 230–235.

    Article  CAS  Google Scholar 

  7. F. Yang, L.M. Dong, L. Cai, X.J. Hu, and F. Fang, Mechanical Properties of FeMnCoCr High Entropy Alloy Alloyed with C/Si at Low Temperatures, J. Alloys Comp., 2021, 859, p 157876.

    Article  CAS  Google Scholar 

  8. E.P. George, W.A. Curtin, and C.C. Tasan, High Entropy Alloys: A Focused Review of Mechanical Properties and Deformation Mechanisms, Acta Mater., 2020, 188(12), p 435–474.

    Article  CAS  Google Scholar 

  9. Y. **e, T. **a, D. Zhou, Y.F. Luo, W. Zeng, Z. Zhang, J. Wang, J.M. Liang, and D.L. Zhang, A Novel Nanostructure to Achieve Ultrahigh Strength and Good Tensile Ductility of a CoCrFeNiMn High Entropy Alloy, Nanoscale, 2020, 12(9), p 5347–5352.

    Article  CAS  Google Scholar 

  10. N.D. Stepanov, D.G. Shaysultanov, N.Y. Yurchenko, S.V. Zherebtsov, A.N. Ladygin, G.A. Salishchev, and M.A. Tikhonovsky, High Temperature Deformation Behavior and Dynamic Recrystallization in CoCrFeNiMn High Entropy Alloy, Mater. Sci. Eng. A, 2015, 636, p 188–195.

    Article  CAS  Google Scholar 

  11. P. Wang, P. Huang, F.L. Ng, W.J. Sin, S.L. Lu, M.L. Nai, Z.L. Dong, and J. Wei, Additively Manufactured CoCrFeNiMn High-Entropy Alloy Via Pre-Alloyed Powder, Mater. Des., 2019, 168, p 107576.

    Article  CAS  Google Scholar 

  12. F. Průša, A. Šenková, V. Kučera, J. Capek, and D. Vojtech, Properties of a High-Strength Ultrafine-Grained CoCrFeNiMn High-Entropy Alloy Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering, Mater. Sci. Eng. A, 2018, 734(8), p 341–352.

    Article  Google Scholar 

  13. J.G. Gigax, O. El-Atwani, Q. McCulloch, B. Aytuna, M. Efe, S. Fensin, S.A. Maloy, and N. Li, Micro- and Mesoscale Mechanical Properties of a FeCrMnNi High Entropy Alloy Subject to Large Strain Extrusion Machining, Scri. Mater., 2020, 178(11), p 508–512.

    Article  CAS  Google Scholar 

  14. W.Y. Huo, H. Zhou, F. Fang, X.J. Hu, Z.H. **e, and J.Q. Jiang, Strain-Rate Effect Upon the Tensile Behavior of CoCrFeNi High-Entropy Alloys, Mater. Sci. Eng. A, 2017, 689(2), p 366–369.

    Article  CAS  Google Scholar 

  15. J. Zhou, H.C. Liao, H. Chen, and A.J. Huang, Microstructure and Tensile Mechanical Behavior of a Single-Phase Fe35Mn10Cr20Ni35 High-Entropy Alloy, J. Mater. Eng. Perf., 2021, 30(5), p 3352–3362.

    Article  CAS  Google Scholar 

  16. Jun Zhou, T. Jiang, H. Liao, H. Chen, Y. Zhang, and W. Zhu, A Comparative Study on Corrosion Behaviors of Fe35Mn10Cr20Ni35 High‐Entropy Alloy and 304 Stainless Steel in Sulfuric Acid Aqueous Solution, Adv. Eng. Mater., 2022, 24(10), p 2200232. https://doi.org/10.1002/adem.202200232

    Article  CAS  Google Scholar 

  17. H.C. Liao, H.T. Xu, J.F. Tang, S.H. Huo, D.Q. Huang, and H. Chen, Significant Strengthening Effect on Martensitic Stainless Steel by Repetitive High-Stress Loading at Ultralow Temperature, Metall. Mater. Trans. A, 2020, 51, p 76–81.

    Article  CAS  Google Scholar 

  18. A. Portevin and F. Le Chatelier, Tensile Tests of Alloys Undergoing Transformation, Comptes. Rendus Acad. Sci. (CRAS), 1923, 176, p 507–510.

    CAS  Google Scholar 

  19. P. Fernandez-Zelaia, B.S. Adair, V.M. Barker, and S.D. Antolovich, The Portevin-Le Chatelier Effect in the Ni-Based Superalloy IN100, Metall. Mater. Trans. A, 2015, 46(12), p 5596–5609.

    Article  CAS  Google Scholar 

  20. S.C. Ren, T.F. Morgeneyer, M. Maziere, S. Forest, and G. Rousselier, Portevin-Le Chatelier Effect Triggered by Complex Loading Paths in an Al-Cu Aluminium Alloy, Philos. Mag., 2019, 99, p 659–678.

    Article  CAS  Google Scholar 

  21. T. Li, Y. Liu, Z. Cao, D. Jiang, and L. Cheng, The Tensile Properties and High Cyclic Fatigue Characteristics of Mg-5Li-3Al-1.5Zn-2RE Alloy, Mater. Sci. Eng. A, 2010, 527(29–30), p 7808–7811. https://doi.org/10.1016/j.msea.2010.08.094

    Article  CAS  Google Scholar 

  22. X. Yang, Y. Zhang, and P.K. Liaw, Microstructure and Compressive Properties of NbTiVTaAlx High Entropy Alloys, Procedia Eng., 2012, 36(3), p 292–298.

    Google Scholar 

  23. H.F. Sheng, M. Gong, and L.M. Peng, Microstructural Characterization and Mechanical Properties of an Al0.5CoCrFeCuNi High-Entropy Alloy in As-Cast and Heat-Treated/Quenched Conditions, Mater. Sci. Eng. A, 2013, 567(5), p 14–20.

    Article  CAS  Google Scholar 

  24. F. Zhiqiang, W. Chen, H. Wen, D. Zhang, Z. Chen, B. Zheng, Y. Zhou, and E.J. Lavernia, Microstructure and Strengthening Mechanisms in an FCC Structured Single-Phase Nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 High-Entropy Alloy, Acta Mater., 2016, 107, p 59–71. https://doi.org/10.1016/j.actamat.2016.01.050

    Article  CAS  Google Scholar 

  25. A. Emamifar, B. Sadeghi, P. Cavaliere, and H. Ziaei, Microstructural Evolution and Mechanical Properties of AlCrFeNiCoC High Entropy Alloy Produced Via Spark Plasma Sintering, Powder Metall., 2019, 62(1), p 61–70.

    Article  CAS  Google Scholar 

  26. J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, and Z.P. Lu, Effects of Al Addition on Structural Evolution and Tensile Properties of the FeCoNiCrMn High-Entropy Alloy System, Acta Mater., 2014, 62, p 105–113.

    Article  CAS  Google Scholar 

  27. A. Griger, V. Stefaniay, T. Turmezey, and Z. Metallkd, Crystallographic Data and Chemical Compositions of Aluminum-Rich Al-Fe Intermetallic Phases, Zeitschrift fuer Metallkunde/Mater. Res. Adv. Techn., 1986, 77, p 30–35.

    CAS  Google Scholar 

  28. L. Guo, X.Q. Ou, S. Ni, Y. Liu, and M. Song, Effects of Carbon on the Microstructures and Mechanical Properties of FeCoCrNiMn High Entropy Alloys, Mate. Sci. Eng. A, 2019, 746, p 356–362.

    Article  CAS  Google Scholar 

  29. M. Hasebe, H. Ohtani, and T. Nishizawa, Effect of Magnetic Transition on Solubility of Carbon in bcc Fe and FCC Co-Ni Alloys, Metall. Trans., 1985, 16(5), p 913–921.

    Article  Google Scholar 

  30. W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, and C.T. Liu, Ductile CoCrFeNiMox High Entropy Alloys Strengthened by Hard Intermetallic Phases, Acta Mater., 2016, 116(6), p 332–342.

    Article  CAS  Google Scholar 

  31. Y. Liu, Y.X. **e, S.G. Cui, Y.L. Yi, X.W. **ng, X.J. Wang, and W. Li, Effect of Mo Element on the Mechanical Properties and Tribological Responses of CoCrFeNiMox High-Entropy Alloys, Metals, 2021, 11(03), p 486.

    Article  CAS  Google Scholar 

  32. T. Shun, L. Chang, and M.H. Shiu, Microstructures and Mechanical Properties of Multi-Principal Component CoCrFeNiTix Alloys, Mate. Sci. Eng. A, 2012, 556(6), p 170–174.

    Article  CAS  Google Scholar 

  33. H. Liu, C. Tsai, and C. Wei, Effect of Ge Addition on the Microstructure, Mechanical Properties, and Corrosion Behavior of CoCrFeNi High-Entropy Alloys, Intermetallics, 2021, 132, p 107167.

    Article  CAS  Google Scholar 

  34. A. Takeuchi and A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element, Mater. Trans., 2005, 46(12), p 2817–2829.

    Article  CAS  Google Scholar 

  35. T. Iida and R.I.L. Guthrie, The Physical Properties of Liquid Metals, 2nd ed. Oxford University Press, New York, 1993.

    Google Scholar 

  36. G.C. Kennedy, AIP Handbook. D.E. Gray Ed., McGrawHill, New York, 1972

    Google Scholar 

  37. A.R. Stokes and A.J.C. Wilson, The Diffraction of X rays by Distorted Crystal Aggregates-I, Proc. Phys. Soc., 1944, 56(3), p 174.

    Article  CAS  Google Scholar 

  38. L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louer, and P. Scardi, Rietveld Refinement Guidelines, J. Appl. Cryst., 1999, 32, p 36–50.

    Article  CAS  Google Scholar 

  39. G.K. Williamson and W.H. Hall, X-ray Line Broadening from Filed Aluminium and Wolfram, Acta Metall., 1953, 1(1), p 22–31.

    Article  CAS  Google Scholar 

  40. Z. Wang, Y. Huang, Y. Yang, J. Wang, and C.T. Liu, Atomic-Size Effect and Solid Solubility of Multicomponent Alloys, Scr. Mater., 2014, 94(9), p 28–31.

    Google Scholar 

  41. R.L. Fleischer, Substitutional Solution Hardening, Acta Metall., 1963, 11(3), p 203–209.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by National Major Basic Research Project of China (Grant No.: 613321), Open Project of Jiangsu Key Laboratory (Grant No.: BM2016023) and Transformation Project of Scientific and Technological Achievements in Jiangsu Province (Grant No.: BA2020023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hengcheng Liao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, H., Zhang, Y., Wu, D. et al. Tolerability of Fe35Ni35Cr20Mn10 Multi-principal-component Alloy to Impurity Elements. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08351-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08351-0

Keywords

Navigation