Log in

Effect of TiC Content on Microstructure and Properties of CrMnFeCoNi High-Entropy Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This article investigated the properties of CrMnFeCoNi + xwt.% TiC (x = 0,1,2,3,4) high-entropy alloy coatings which prepared on the surface of Q235 steel plate by plasma-transferred arc. X-ray diffractometer, energy spectrum analysis, etc., were used to characterize the coatings. The high-entropy alloy coating structure is a single face-centered cubic structure whether TiC is added or not. The five main elements of CrMnFeCoNi HEA are evenly distributed in all coatings. 03TiC has the highest average microhardness and the best friction and wear resistance performance. The corrosion resistance of 02TiC is best in 1 mol/L NaCl solution. When the addition of TiC is 4 wt.%, the microhardness and friction wear resistance of the high-entropy alloy coating decrease, and the corrosion resistance deteriorates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W. Wang, J. Wang, Z. Sun, J. Li, L. Li, X. Song, X. Wen, L. **e, and X. Yang, Effect of Mo and Aging Temperature on Corrosion Behavior of (CoCrFeNi)100-XMox High-Entropy Alloys, J. Alloys Compd., 2020, 812, p 152139. https://doi.org/10.1016/j.jallcom.2019.152139

    Article  CAS  Google Scholar 

  2. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303.

    Article  CAS  Google Scholar 

  3. A. Vyas, J. Menghani, and H. Natu, Influence of WC Particle on the Metallurgical, Mechanical, and Corrosion Behavior of AlFeCuCrCoNi-WCx High-Entropy Alloy Coatings, J. Mater. Eng. Perform., 2021, 30(4), p 2449–2461. https://doi.org/10.1007/s11665-021-05523-8

    Article  CAS  Google Scholar 

  4. J. Cheng, D. Liu, X. Liang, and Y. Chen, Evolution of Microstructure and Mechanical Properties of in Situ Synthesized TiC-TiB2/CoCrCuFeNi High Entropy Alloy Coatings, Surf. Coatings Technol., 2015, 281, p 109–116.

    Article  CAS  Google Scholar 

  5. A. Kanchi, K.V. Rajulapati, B.S. Rao, D. Sivaprahasam, and R.C. Gundakaram, Influence of Thermomechanical Processing on Microstructure and Mechanical Properties of MoNbTaW Refractory High-Entropy Alloy, J. Mater. Eng. Perform., 2022, 31(10), p 7964–7972. https://doi.org/10.1007/s11665-022-06855-9

    Article  CAS  Google Scholar 

  6. J.W. Qiao, Z. Wang, L.W. Ren, H.L. Jia, S.G. Ma, H.J. Yang, and Y. Zhang, Enhancement of Mechanical and Electrochemical Properties of Al02.5CrCoFe1.25Ni1.25 High-Entropy Alloys by Coating Ni-P Amorphous Films, Mater. Sci. Eng. A, 2016, 657, p 353–358.

    Article  CAS  Google Scholar 

  7. Q. Liu, T. Shun Dong, B. Guo Fu, G. Lu Li, and L. Jun Yang, Effect of Laser Remelting on Microstructure and Properties of AlCoCrFeNi High-Entropy Alloy Coating, J. Mater. Eng. Perform., 2021, 30(8), p 5728–5735. https://doi.org/10.1007/s11665-021-05806-0

    Article  CAS  Google Scholar 

  8. R. Zhang, K. Tulugan, A. Zhang, J. Meng, and J. Han, Effect of Aluminum Content on the Tribological Properties of AlxCrTiMo Refractory High-Entropy Alloys, J. Mater. Eng. Perform., 2022, 31(2), p 984–993. https://doi.org/10.1007/s11665-021-06243-9

    Article  CAS  Google Scholar 

  9. X.C. Li, D. Dou, Z.Y. Zheng, and J.C. Li, Microstructure and Properties of FeAlCrNiMo x High-Entropy Alloys, J.f Mater. Eng. Perform., 2016, 25(June), p 2164–2169.

    Article  CAS  Google Scholar 

  10. K.A. Rozman, M. Detrois, T. Liu, M.C. Gao, P.D. Jablonski, and J.A. Hawk, Long-Term Creep Behavior of a CoCrFeNiMn High-Entropy Alloy, J. Mater. Eng. Perform., 2020, 29(9), p 5822–5839. https://doi.org/10.1007/s11665-020-05103-2

    Article  CAS  Google Scholar 

  11. H. Wu, S. Zhang, Z.Y. Wang, C.H. Zhang, H.T. Chen, and J. Chen, New Studies on Wear and Corrosion Behavior of Laser Cladding FeNiCoCrMox High Entropy Alloy Coating: The Role of Mo, Int. J. Refract. Met. Hard Mater., 2021, 2022(102), p 234–244.

    Google Scholar 

  12. A. Kumar, A.K. Swarnakar, and M. Chopkar, Phase Evolution and Mechanical Properties of AlCoCrFeNiSi x High-Entropy Alloys Synthesized by Mechanical Alloying and Spark Plasma Sintering, J. Mater. Eng. Perform., 2018, 27(7), p 3304–3314. https://doi.org/10.1007/s11665-018-3409-4

    Article  CAS  Google Scholar 

  13. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 375–377, p 213–218.

    Article  Google Scholar 

  14. G. Laplanche, S. Berglund, C. Reinhart, A. Kostka, F. Fox, and E.P. George, Phase Stability and Kinetics of σ-Phase Precipitation in CrMnFeCoNi High-Entropy Alloys, Acta Mater., 2018, 161, p 338–351.

    Article  CAS  Google Scholar 

  15. F. **ong, R. Fu, Y. Li, B. Xu, and X. Qi, Influences of Nitrogen Alloying on Microstructural Evolution and Tensile Properties of CoCrFeMnNi High-Entropy Alloy Treated by Cold-Rolling and Subsequent Annealing, Mater. Sci. Eng. A, 2020, 787, p 268–284.

    Article  Google Scholar 

  16. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science (80-. )., 2014, 345(6201), p 1153–1158.

  17. P.F. Jiang, C.H. Zhang, S. Zhang, J.B. Zhang, J. Chen, and Y. Liu, Fabrication and Wear Behavior of TiC Reinforced FeCoCrAlCu-Based High Entropy Alloy Coatings by Laser Surface Alloying, Mater. Chem. Phys., 2020, 255, p 1–10.

    Article  Google Scholar 

  18. Q.C. Fan, B.S. Li, and Y. Zhang, The Microstructure and Properties of (FeCrNiCo)AlxCuy High-Entropy Alloys and Their TiC-Reinforced Composites, Mater. Sci. Eng. A, 2014, 598, p 244–250.

    Article  CAS  Google Scholar 

  19. W. Guo, Z. Jia, G. Liu, N. Ding, L. Liu, H. Xu, N. Xu, J. He, F. Zaïri, and X. Wang, Effect of Post-Cladding Heat Treatment on Microstructure and Performance of a Laser Cladded 2Cr17Ni2 Steel Coating, J. Mater. Eng. Perform., 2023, 32(4), p 1778–1789.

    Article  CAS  Google Scholar 

  20. R. David, V. Shrivastava, R. Dasgupta, B.K. Prasad, and I.B. Singh, Corrosion Investigation of Zinc-Aluminum Alloy (ZA-27) Matrix Reinforced with In Situ Synthesized Titanium Carbide Particle Composites, J. Mater. Eng. Perform., 2019, 28(4), p 2356–2364. https://doi.org/10.1007/s11665-019-03992-6

    Article  CAS  Google Scholar 

  21. S. Varalakshmi, M. Kamaraj, and B.S. Murty, Synthesis and Characterization of Nanocrystalline AlFeTiCrZnCu High Entropy Solid Solution by Mechanical Alloying, J. Alloys Compd., 2008, 460(1–2), p 253–257.

    Article  CAS  Google Scholar 

  22. J.B. Cheng, X.B. Liang, Z.H. Wang, and B.S. Xu, Formation and Mechanical Properties of Conicufecr High-Entropy Alloys Coatings Prepared by Plasma Transferred Arc Cladding Process, Plasma Chem. Plasma Process., 2013, 33(5), p 979–992.

    Article  CAS  Google Scholar 

  23. B. Zhang, J. Cheng, and B. Xu, (CuCoCrFeNi)95B5 High-Entropy Alloy Coatings Prepared by Plasma Transferred Arc Cladding Process, **you **shu Cailiao Yu Gongcheng/Rare Met, Mater. Eng., 2014, 43(5), p 1128–1132.

    Google Scholar 

  24. B. Chai, J. **ong, Z. Guo, J. Liu, L. Ni, Y. **ao, and C. Chen, Structure and High Temperature Wear Characteristics of CVD Coating on HEA-Bonded Cermet, Ceram. Int., 2019, 45(15), p 19077–19085.

    Article  CAS  Google Scholar 

  25. V.M. Nadutov, A.V. Proshak, S.Y. Makarenko, V.Y. Panarin, and M.Y. Svavil’Nyj, Creation and Mössbauer Studies of High-Entropy Physical Vapor Deposition by Cathode Arc Evaporation (PVD CAE) Coating AlFeCoNiCuCr, Materwiss., 2016, 47(2–3), p 272–277.

    CAS  Google Scholar 

  26. Y. Ming Zhong, X. Du Dong, and G. Wu, Effect of Powder-Feeding Modes During Plasma Spray on the Properties of Tungsten Carbide Composite Coatings, J. Mater. Eng. Perform., 2017, 26(5), p 2285–2292.

    Article  Google Scholar 

  27. G. **, Y. Li, H. Cui, X. Cui, and Z. Cai, Microstructure and Tribological Properties of In Situ Synthesized TiN Reinforced Ni/Ti Alloy Clad Layer Prepared by Plasma Cladding Technique, J. Mater. Eng. Perform., 2016, 25(6), p 2412–2419.

    Article  CAS  Google Scholar 

  28. N. Jeyaprakash, C.H. Yang, G. Prabu, and K.G. Balamurugan, Surface Alloying of FeCoCrNiMn Particles on Inconel-718 Using Plasma-Transferred Arc Technique: Microstructure and Wear Characteristics, RSC Adv., 2021, 11(45), p 28271–28285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ö.N. Dogan, J.A. Hawk, and K.K. Schrems, TiC-Reinforced Cast Cr Steels, J. Mater. Eng. Perform., 2006, 15(3), p 320–327.

    Article  CAS  Google Scholar 

  30. H. Li, L. Jiao, R. Xu, F. Li, S.B. Lu, Y.P. Qiao, C.Y. Li, and P. Zhang, Surface Wear Behavior and Friction and Wear Mechanism Studies of A356/3 Wt.% Al3Zr Composites, J. Mater. Eng. Perform., 2021, 30(5), p 3892–3902. https://doi.org/10.1007/s11665-021-05707-2

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Huang, L., Zhou, Y. et al. Effect of TiC Content on Microstructure and Properties of CrMnFeCoNi High-Entropy Alloy. J. of Materi Eng and Perform 33, 4987–4999 (2024). https://doi.org/10.1007/s11665-023-08307-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08307-4

Keywords

Navigation