Log in

Influence of Tool Size and Step Depth on the Formability Behavior of AA1050, AA6061-T6, and AA7075-T6 by Single-Point Incremental Forming Process

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Single-Point Incremental Forming (SPIF) is suitable for a small-batch specialized process that is versatile and flexible. Metal alloys with a high strength-to-weight ratio are generally tough to form because of their partial formability at room temperature. This current study highlights a comparative investigation on the formability of commercially available aluminum alloy sheets, i.e., AA1050, AA6061-T6, and AA7075-T6. The formability is reported in terms of maximum wall angle (θmax) fabricated to varying wall angle conical frustum (VWACF) with hyperbolic generatrix with SPIF. The statistical analysis is used to check the effect of process parameters on the formability. To identify the significant parameters and their interactions, the RSM's D-optimal design and ANOVA were utilized. The effect of tool size and step depth and their mutual interaction is studied, whereas feed rate, spindle speed, and lubricant type were kept constant. The individual impact of tool diameter and step depth has been discussed in detail. ANOVA study reveals that tool radius ‘R’ is the most important factor affecting formability of the part for AA1050 and AA7075-T6, whereas step depth ‘Z’ is the most significant factor for AA6061-T6. The microstructure, micro-hardness and geometrical accuracy study of the formed part was investigated at optimal forming condition. Furthermore, a guideline of step-depth and tool size selection to enhance the formability were also presented.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L. Van Sy and M. Van Viet, Influence of Lubricants, and Lubricating Methods on Surface Roughness in the Two-Point Incremental Sheet Forming Process, Int. J. Adv. Manuf. Technol., 2022, 121(1–2), p 1365–1372.

    Google Scholar 

  2. R.G. Schreiber, A. Araldi, M. Kiniz Junior, A. Daleffe, and L. Schaeffer, Failure Criterion for SPIF Based on Mean Stress, J. Brazil Soc. Mech. Sci. Eng., 2022, 44(5), p 1–11.

    Google Scholar 

  3. A. Bhattacharya, K. Maneesh, N. Venkata Reddy, and J. Cao, 2011 Formability and Surface Finish Studies in Single Point Incremental Forming. J. Manuf. Sci. Eng. , 133(6).

  4. G. Kumar and K. Maji, Forming Limit Analysis of Friction Stir Tailor Welded AA5083 and AA7075 Sheets in Single Point Incremental Forming, Int. J. Mater. Forming, 2022, 15(3), p 20.

    Article  Google Scholar 

  5. G. Ingarao, O. Zaheer, and L. Fratini, Manufacturing Processes as Material and Energy Efficiency Strategies Enablers: The Case of Single Point Incremental Forming to Reshape End-of-Life Metal Components, CIRP J. Manuf. Sci. Technol., 2021, 32, p 145–153.

    Article  Google Scholar 

  6. H.K. Nirala and A. Agrawal, Adaptive Increment Based Uniform Sheet Stretching in Incremental Sheet Forming (ISF) for Curvilinear Profiles, J. Mater. Process. Technol., 2022, 306, 117610.

    Article  Google Scholar 

  7. R. Mohanraj, S. Elangovan, and S. Pratheesh Kumar, Experimental Investigations of Warm Incremental Sheet Forming Process on Magnesium AZ31 and Aluminium 6061 Alloy, Proceed. Institution of Mech. Eng. Part L J. Mater.: Design and Appl., 2023, 237(2), p 283–300.

    CAS  Google Scholar 

  8. Y. Zimeng, B. Lang, L. **aoming, W. Shenli, and L. Ling, Experimental and Numerical Study of Forming Force in Ultrasonic Vibration Single Point Incremental Forming, Ferroelectrics, 2022, 596(1), p 27–38.

    Article  CAS  Google Scholar 

  9. B. Krasowski, A. Kubit, T. Trzepiecinski, and J. Slota, Experimental Analysis of Single Point Incremental Forming of Truncated Cones in DC04 Steel Sheet, Adv. Mater. Sci., 2020, 20(4), p 5–15.

    Article  CAS  Google Scholar 

  10. I. Paniti, Study on Effecting Parameters of Flat and Hemispherical End Tools in SPIF of Aluminium Foils, Tehnicki vjesnik, 2020, 27(6), p 1844–1849.

    Google Scholar 

  11. M. Szpunar, R. Ostrowski, T. Trzepiecinski, and L. Kascak, Central Composite Design Optimisation in Single Point Incremental Forming of Truncated Cones From Commercially Pure Titanium Grade 2 Sheet Metals, Materials, 2021, 14(13), p 3634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. T. Cao, B. Lu, J. Cao, and J. Chen, Experimental Investigations on the Forming Mechanism of a New Incremental Stretch-Flanging Strategy with a Featured Tool, Int. J. Adv. Manuf. Technol., 2017, 92, p 2953–2964.

    Article  Google Scholar 

  13. K. Gorgulu and A. Ceylanoglu, Evaluation of Continuous Grinding Tests on Some Marble and Limestone Units with Silicon Carbide and Diamond Type Abrasives, J. Mater. Process. Technol., 2008, 204(1–3), p 264–268.

    Article  Google Scholar 

  14. W.S. Lee, W.C. Sue, C.F. Lin, and C.J. Wu, The Strain rate and Temperature Dependence of the Dynamic Impact Properties of 7075 Aluminum Alloy, J. Mater. Process. Technol., 2000, 100, p 116–122.

    Article  Google Scholar 

  15. N. Lutsey and D. Sperling, Energy Efficiency, Fuel Economy, and Policy Implications, Transp. Res. Rec., 2005, 1941(1), p 8–17.

    Article  Google Scholar 

  16. G. Hussain, L. Gao, N. Hayat, and X. Ziran, A New Formability Indicator in Single Point Incremental Forming, J. Mater. Process. Technol., 2009, 209(9), p 4237–4242.

    Article  CAS  Google Scholar 

  17. M. Yang, Z. Yao, Y. Li, P. Li, F. Cui, and L. Bai, Study on thickness thinning ratio of the forming parts in single point incremental forming process. Adv. Mater. Sci. Eng. 2018.

  18. J. Jeswiet, J.R. Duflou, and A. Szekeres, Forces in Single Point and Two Point Incremental Forming, Adv. Mater. Res., 2005, 6, p 449–456.

    Article  Google Scholar 

  19. M. Ham and J. Jeswiet, Single Point Incremental Forming and the Forming Criteria for AA3003, CIRP Ann., 2006, 55(1), p 241–244.

    Article  Google Scholar 

  20. D.S. Malwad and V.M. Nandedkar, Deformation Mechanism Analysis of Single Point Incremental Sheet Metal Forming, Procedia Mater. Sci., 2014, 6, p 1505–1510.

    Article  CAS  Google Scholar 

  21. G. Hussain, H.R. Khan, L. Gao, and N. Hayat, Guidelines for Tool-Size Selection for Single-Point Incremental Forming of an Aerospace Alloy, Mater. Manuf. Process., 2013, 28(3), p 324–329.

    Article  CAS  Google Scholar 

  22. C. Pandivelan and A. Jeevanantham, Formability Evaluation of AA 6061 Alloy Sheets on Single Point Incremental Forming Using CNC Vertical Milling Machine, J. Mater. Environ. Sci., 2015, 6, p 1343–1353.

    CAS  Google Scholar 

  23. A. Mulay, H. Hirani, and S.K. Choudhary, Numerical Modeling and Optimization with Novel Process Parameters in the Incremental Forming of DC04 Sheets. J. Mater. Eng. Perform. 2022, p 1–12.

  24. Z. Cui, Z.C. **a, F. Ren, V. Kiridena, and L. Gao, Modeling and Validation of Deformation Process for Incremental Sheet Forming, J. Manuf. Process., 2013, 15(2), p 236–241.

    Article  Google Scholar 

  25. M. Durante, A. Formisano, and A. Langella, Comparison Between Analytical and Experimental Roughness Values of Components Created by Incremental Forming, J. Mater. Process. Technol., 2010, 210(14), p 1934–1941.

    Article  Google Scholar 

  26. S. Kurra, N.H. Rahman, S.P. Regalla, and A.K. Gupta, Modeling and Optimization of Surface Roughness in Single Point Incremental Forming Process, J. Market. Res., 2015, 4(3), p 304–313.

    Google Scholar 

  27. A. Mulay, S. Ben, S. Ismail, and A. Kocanda, Experimental Investigations into the Effects of SPIF Forming Conditions on Surface Roughness and Formability by Design of Experiments, J. Braz. Soc. Mech. Sci. Eng., 2017, 39, p 3997–4010.

    Article  Google Scholar 

  28. E. Salem, J. Shin, M. Nath, M. Banu, and A.I. Taub, Investigation of Thickness Variation in Single Point Incremental Forming, Procedia Manuf., 2016, 5, p 828–837.

    Article  Google Scholar 

  29. V.K. Barnwal, S. Chakrabarty, A. Tewari, K. Narasimhan, and S.K. Mishra, Forming Behavior and Microstructural Evolution During Single Point Incremental Forming Process of AA-6061 Aluminum Alloy Sheet, Int. J. Adv. Manuf. Technol., 2018, 95, p 921–935.

    Article  Google Scholar 

  30. S.M. Najm, I. Paniti, T. Trzepiecinski, S.A. Nama, Z.J. Viharos, and A. Jacso, Parametric Effects of Single Point Incremental Forming on Hardness of AA1100 Aluminium Alloy Sheets, Materials, 2021, 14(23), p 7263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. F. Maqbool and M. Bambach, Dominant Deformation Mechanisms in Single Point Incremental Forming (SPIF) and Their Effect on Geometrical Accuracy, Int. J. Mech. Sci., 2018, 136, p 279–292.

    Article  Google Scholar 

  32. G. Hussain, Experimental Investigations on the Role of Tool Size in Causing and Controlling Defects in Single Point Incremental Forming Process, Proceed. Institution of Mech. Eng. Part B: J. Eng. Manuf., 2014, 228(2), p 266–277.

    Article  Google Scholar 

  33. B.L. Isidore, G. Hussain, S.P. Shamchi, and W.A. Khan, Prediction and Control of Pillow Defect in Single Point Incremental Forming Using Numerical Simulations, J. Mech. Sci. Technol., 2016, 30(5), p 2151–2161.

    Article  Google Scholar 

  34. M.T. Mezher, O.S. Barrak, S.A. Nama, and R.A. Shakir, Predication of Forming Limit Diagram and Spring-back during SPIF process of AA1050 and DC04 Sheet Metals, J. Mech. Eng. Res. Develop., 2021, 44(1), p 337–345.

    Google Scholar 

  35. S. Ashokkumar, S.P.S. Singh, S. Balasubramanian, and R.V. Nanditta, Effects of Process Variables Optimization on the Quality of Parts Processed in High Speed Single Point Incremental Sheet Metal Forming by Ranking Algorithm, Mater. Today: Proceed., 2021, 45, p 1707–1712.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge Sardar vallabhbhai National Institute of Technology Surat for funding the present research work [grant number 2020-21/Seed Money/20]

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrut Mulay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, S., Mulay, A. Influence of Tool Size and Step Depth on the Formability Behavior of AA1050, AA6061-T6, and AA7075-T6 by Single-Point Incremental Forming Process. J. of Materi Eng and Perform 33, 3283–3298 (2024). https://doi.org/10.1007/s11665-023-08231-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08231-7

Keywords

Navigation