Log in

Influence of Nb Morphology on the Structure and Properties of High Strength and High Conductivity Cu-Nb Composite Wires

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, two types of high strength and high conductivity Cu-Nb and Cu-Nb-Cu microcomposites wires were successfully fabricated by accumulative drawing and bundling process. The results demonstrated that the comprehensive performance of the Cu-Nb-Cu microcomposite was considerably higher than that of the Cu-Nb microcomposite. The effects of reinforcement morphology (Nb phase) on the diffraction peaks, microstructures, and mechanical and electrical properties were studied in detail. We rationalized the high strength is attributed to grain refinement, dislocation strengthening, as well as fiber composite strengthening, which will provide conductor material supports for the pulsed high magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X.T. Han, T. Peng, H.F. Ding, and T.H. Ding, The Pulsed High Magnetic Field Facility and Scientific Research at Wuhan National High Magnetic Field Center, Matter Radiat. Extremes, 2017, 2, p 278–286.

    Article  Google Scholar 

  2. Y.Q. Sun, L.J. Peng, G.J. Huang, H.F. **e, X.J. Mi, and X.H. Liu, Effects of Mg Addition on the Microstructure and Softening Resistance of Cu-Cr Alloys, Mater. Sci. Eng. A., 2020, 776, p 139009.

    Article  CAS  Google Scholar 

  3. S. Huang and Q. Xu, Effect of C on the Formation of Cu Precipitates and Vacancy Clusters in Neutron-Irradiated Fe-Cu Alloys, J. Nucl. Mater., 2020, 533, p 152085.

    Article  CAS  Google Scholar 

  4. L.F. Zeng, R. Gao, Q.F. Fang, X.P. Wang, Z.M. **e, S. Miao, T. Hao, and T. Zhang, High Strength and Thermal Stability of Bulk Cu/Ta Nanolamellar Multilayers Fabricated by Cross Accumulative Roll Bonding, Acta Mater, 2016, 110, p 341–351.

    Article  CAS  Google Scholar 

  5. S.I. Hong and M.A. Hill, Microstructural Stability of Cu-Nb Microcomposite Wires Fabricated by the Bundling and Drawing Process, Mater. Sci. Eng. 4 A., 2000, 281, p 189–197.

    Article  Google Scholar 

  6. E. Botcharova, J. Freudenberger, and A. Gaganov, Novel Cu-Nb Wires: PROCESSING and Characterisation, Mater. Sci. Eng. A., 2006, 416, p 261–268.

    Article  Google Scholar 

  7. L.P. Deng, Z.F. Liu, B.S. Wang, K. Han, and H.L. **ang, Effects of Interface Area Density and Solid Solution on the Microhardness of Cu-Nb Microcomposite Wires, Mater. Charact., 2019, 150, p 62–66.

    Article  CAS  Google Scholar 

  8. X. Sauvage, L. Renaud, B. Deconihout, D. Blavette, D.H. **, and K. Hono, Solid State Amorphization in Cold Drawn Cu/Nb Wires, Acta Mater., 2001, 49, p 389–394.

    Article  CAS  Google Scholar 

  9. V. Vidal, L. Thilly, F. Lecouturier, and P.O. Renault, Cu Nanowhiskers Embedded in Nb Nanotubes Inside a Multiscale Cu Matrix: The Way to Reach Extreme Mechanical Properties in High Strength Conductors, Scr. Mater., 2007, 57, p 245–248.

    Article  CAS  Google Scholar 

  10. D.P. Shen, H.B. Zhou, and W.P. Tong, Influence of Deformation Temperature on the Microstructure and Thermal Stability of HPT-consolidated Cu-1%Nb Alloys, J. Mater. Res. Technol., 2019, 8, p 6396–6399.

    Article  CAS  Google Scholar 

  11. E.H. Ekiz, T.G. Lach, R.S. Averback, N.A. Mara, I.J. Beyerlein, M. Pouryazdan, H. Hahn, and P. Bellon, Microstructural Evolution of Nanolayered Cu-Nb Composites Subjected to High-Pressure Torsion, Acta Mater., 2014, 72, p 178–191.

    Article  CAS  Google Scholar 

  12. E.N. Popova, V.V. Popov, E.P. Romanov, N.E. Hlebova, and A.K. Shikov, Effect of Deformation and Annealing on Texture Parameters of Composite Cu-Nb Wire, Scr. Mater., 2004, 51, p 727–731.

    Article  CAS  Google Scholar 

  13. M. Liang, Y.F. Lu, Z.L. Chen, C.S. Li, and P.X. Zhang, Characteristics of High Strength and High Conductivity Cu-Nb Micro-composites, IEEE Trans. Appl. Supercond., 2010, 20, p 1619–1621.

    Article  CAS  Google Scholar 

  14. X.C. Wang, C.F. Kui, Y.P. Li, and G. Yan, Study on Dislocation Density Change During Cold Roll-Beating of 40Cr, Chin. J. Mech. Eng., 2013, 24, p 2248–2256.

    CAS  Google Scholar 

  15. Q.Y. Guo, L. Wan, X.X. Yu, F. Vogel, and G.B. Thompson, Influence of Phase Stability on the in situ Growth Stresses in Cu/Nb Multilayered Films, Acta Mater., 2017, 132, p 149–161.

    Article  CAS  Google Scholar 

  16. L.P. Deng, K. Han, K.T. Hartwig, T.M. Siegrist, L.Y. Dong, Z.Y. Sun, X.F. Yang, and Q. Liu, Hardness, Electrical Resistivity, and Modeling of in situ Cu-Nb Microcomposites, J. Alloys Compd., 2014, 602, p 331–338.

    Article  CAS  Google Scholar 

  17. P. Zhang, Q. Lei, X.B. Yuan, X.F. Heng, D. Jiang, Y.P. Li, and Z. Li, Microstructure and Mechanical Properties of a Cu-Fe-Nb Alloy with a High Product of the Strength Times the Elongation, Mater. Today Commun., 2020, 25, p 101353.

    Article  CAS  Google Scholar 

  18. J. Wang, A. Misra, R.G. Hoagland, and J.P. Hirth, Slip Transmission Across fcc/bcc Interfaces with Varying Interface Shear Strengths, Acta Mater., 2012, 60, p 1503–1513.

    Article  CAS  Google Scholar 

  19. H.Y. Yang, Z.C. Ma, C.H. Lei, L. Meng, Y.T. Fang, J.B. Liu, and H.T. Wang, High Strength and High Conductivity Cu Alloys: A Review, Sci China Tech Sci., 2020, 63, p 1–13.

    Article  Google Scholar 

  20. J.Y. Zhang, P. Zhang, X. Zhang, R.H. Wang, G. Liu, G.J. Zhang, and J. Sun, Mechanical Properties of fcc/fcc Cu/Nb Nanostructured Multilayers, Mater. Sci. Eng. A., 2012, 545, p 118–122.

    Article  CAS  Google Scholar 

  21. J. Bevk, J.P. Harbison, and J.D. Bell, Anomalous Increase in Strength of in situ Formed Cu-Nb Multifilamentary Composites, J. Appl. Phys., 1978, 49, p 6031–6038.

    Article  CAS  Google Scholar 

  22. X.Q. Wang, F.K. Cui, G.P. Yan, and Y.X. Li, Study on Dislocation Density Change during Cold Roll-Beating of 40Cr, China Mech. Eng., 2013, 6, p 2248–2256.

    Google Scholar 

  23. G. Badinier, C.W. Sinclair, S. Allain, and O. Bouaziz, The Bauschinger Effect in Drawn and Annealed Nanocomposite Cu-Nb Wires, Mater. Sci. Eng. A., 2014, 597, p 10–19.

    Article  CAS  Google Scholar 

  24. M. Liang, P.F. Wang, X.Y. Xu, C.S. Li, and P.X. Zhang, High Strength and Conductivity CuAg Microcomposites by ADB Process, IEEE Trans. Appl. Supercond., 2020, 30, p 4301004.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation of China (52073233) and Shaanxi Provincial Key R&D Program (2022GY-376).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengfei Wang or Ming Liang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Wu, Y., Li, J. et al. Influence of Nb Morphology on the Structure and Properties of High Strength and High Conductivity Cu-Nb Composite Wires. J. of Materi Eng and Perform 33, 2607–2615 (2024). https://doi.org/10.1007/s11665-023-08186-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08186-9

Keywords

Navigation