Log in

Metal Transfer Behavior in AA6061 Aluminum Alloy Double-Wire Median Pulsed Gas Metal Arc Welding

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

An integrated aluminum alloy double-wire pulsed current gas metal arc welding system with a median waveform is developed. A digital oscilloscope acquires the voltage and current waveforms of the front median pulse (FMP) and back median pulse (BMP). At the same time, a high-speed camera records the metal transfer processes of FMP and BMP. The metal transfer behavior is analyzed. The experimental results showed that FMP and BMP could obtain stable voltage and current waveforms in addition to achieving continuous welds. In the case of the FMP, the metal transfer mode is one drop multi-pulse, precisely one drop two-pulse mode. The droplet diameter is large, so droplet collisions are more likely to occur, causing the welding process to splash around severely. In the case of the BMP, one drop per pulse (ODPP), the ideal mode, is achieved. The droplet diameter is small, so the spatter is limited, and the welding process appears more stable than that of FMP. The BMP can promote metal transfer, making it easier to achieve ODPP using the same parameters. In addition, the weld quality of BMP is better than that of FMP, in which the fish-scale ripples are prominent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Michie, S. Blackman, and T.E.B. Ogunbiyi, Twin Wire GMAW: Process Characteristics and Applications, Weld. J., 1999, 78(5), p 31s–34s.

    Google Scholar 

  2. T. Matsumoto and S. Sasabe, Tandem MIG Welding of Aluminium Alloys, Weld. Int., 2005, 19(12), p 945–949.

    Article  Google Scholar 

  3. P.K. Ghosh, L. Dorn, S. Kulkarni, and F. Hofmann, Arc Characteristics and Behaviour of Metal Transfer in Pulsed Current GMA Welding of Stainless Steel, J. Mater. Process. Tech., 2009, 209, p 1262–1274.

    Article  CAS  Google Scholar 

  4. V.L. Jorge, F.M. Scotti, R.P. Reis, and A. Scotti, Wire Feed Pulsation as a Means of Inducing Surface Tension Metal Transfer in Gas Metal Arc Welding, J. Manuf. Process., 2021, 62, p 655–669.

    Article  Google Scholar 

  5. X.P. Ding, H. Li, H.L. Wei, and J.Q. Liu, Numerical Analysis of Arc Plasma Behavior in Double-Wire GMAW, Vacuum, 2016, 124, p 46–54.

    Article  Google Scholar 

  6. X.C. Zhang, H.M. Gao, and G.J. Zhang, Current-Independent Metal Transfer by Utilizing Droplet Resonance in Gas Metal Arc Welding, J. Mater. Process. Tech., 2020, 279, p 116571.

    Article  CAS  Google Scholar 

  7. A. Scotti, C.O. Morais, and L.O. Vilarinho, The Effect of Out-of-Phase Pulsing on Metal Transfer in Twin-Wire GMA Welding at High Current Level, Weld. J., 2006, 85(10), p 225s–230s.

    Google Scholar 

  8. P.J. Groetelaars, C.O. Morais, and A. Scotti, Influence of the Arc Length on Metal Transfer in the Single Potential Double-Wire MIG/MAG Process, Weld. Int., 2009, 23(2), p 112–119.

    Article  Google Scholar 

  9. H.L. Wei, H. Li, Y. Gao, X.P. Ding, and L.J. Yang, Welding Process of Consumable Double Electrode with a Single Arc GMAW, Int. J. Adv. Manuf. Technol., 2015, 76(1–4), p 435–446.

    Article  Google Scholar 

  10. T. **ang, H. Li, H.L. Wei, and Y. Gao, Arc Characteristics and Metal Transfer Behavior of Twin-Arc Integrated Cold Wire Hybrid Welding, Int. J. Adv. Manuf. Technol., 2016, 87(9–12), p 2653–2663.

    Article  Google Scholar 

  11. T. **ang, H. Li, C.Q. Huang, H.L. Wei, J.X. Li, and Y. Gao, The Metal Transfer Behavior and the Effect of Arcing Mode on Metal Transfer Process in Twin-Arc Integrated Cold Wire Hybrid Welding, Int. J. Adv. Manuf. Technol., 2017, 90(1–4), p 1043–1050.

    Article  Google Scholar 

  12. P.J. Groetelaars, C.O. de Morais, and A. Scotti, Influence of the Arc Length on Metal Transfer in the Single Potential Double-Wire MIG/MAG Process, Weld. J., 2009, 23(2), p 112–119.

    Article  Google Scholar 

  13. K.Y. Wu, T. Yin, N. Ding, M. Zeng, and Z.Y. Liang, Effect of Phase on the Behavior of Metal Transfer in Double-Wire Pulsed GMAW, Int. J. Adv. Manuf. Technol., 2018, 97(9–12), p 3777–3789.

    Article  Google Scholar 

  14. K.Y. Wu, X.W. Cao, T. Yin, M. Zeng, and Z.Y. Liang, Metal Transfer Process and Properties of Double-Wire Double Pulsed Gas Metal Arc Welding, J. Manuf. Process., 2019, 44, p 367–375.

    Article  Google Scholar 

  15. Md.R.U. Ahsan, Y.R. Kim, C.H. Kim, J.W. Kim, R. Ashiri, and Y.D. Park, Porosity Formation Mechanisms in Cold Metal Transfer (CMT) Gas Metal Arc Welding (GMAW) of Zinc Coated Steels, Sci. Technol. Weld. Joining., 2016, 21(3), p 209–215.

    Article  CAS  Google Scholar 

  16. Md.R.U. Ahsan, Y.R. Kim, R. Ashiri, Y.J. Cho, C. Jeong, and Y.D. Park, Cold Metal Transfer (CMT) GMAW of Zinc-Coated Steel, Weld. J., 2016, 95(4), p 120s–132s.

    Google Scholar 

  17. Md.R.U. Ahsan, M. Cheeepu, R. Ashiri, T.H. Kim, C. Jeong, and Y.D. Park, Mechanisms of Weld Pool Flow and Slag Formation Location in Cold Metal Transfer (CMT) Gas Metal Arc Welding (GMAW), Weld. World., 2017, 61(6), p 1275–1285.

    Article  CAS  Google Scholar 

  18. H. Zheng, B.J. Qi, and M.X. Yang, Dynamic Analysis of the Ultrasonic-Frequency Pulsed GMAW Metal Transfer Process, J. Manuf. Process., 2021, 62, p 283–290.

    Article  Google Scholar 

  19. D.S. Chen, M.A. Chen, and C.S. Wu, Effects of Phase Difference on the Behavior of Arc and Weld Pool in Tandem P-GMAW, J. Mater. Process. Tech., 2015, 225, p 45–55.

    Article  CAS  Google Scholar 

  20. P. Yao, J.X. Xue, K. Zhou, X.J. Wang, and Q. Zhu, Symmetrical Transition Waveform Control on Double-Wire MIG Welding, J. Mater. Process. Tech., 2016, 229, p 111–120.

    Article  Google Scholar 

  21. P. Yao and K. Zhou, Research of a Multi-Frequency Waveform Control Method on Double-Wire MIG Arc Welding, Appl. Sci., 2017, 7(2), p 1–16.

    Article  Google Scholar 

  22. H. Chen, J.X. Xue, and G.C. Heng, Improvement of Double Wire MIG Welding by Using Sine Wave Pulse Modulation Control Method (Hangzhou, China), IEEE Int. Conf. Intell. Human-Mach. Syst. Cybern., 2017, 1, p 451–455.

    Google Scholar 

  23. S.Q. Moinuddin and A. Sharma, Arc Stability and Its Impact on Weld Properties and Microstructure in Anti-Phase Synchronised Synergic-Pulsed Twin-Wire Gas Metal Arc Welding, Mater. Des., 2015, 67, p 293–302.

    Article  Google Scholar 

  24. Z.D. Zhang and X.Y. Kong, Study on DC Double Pulse Metal Inert Gas (MIG) Welding of Magnesium Alloy, Mater. Manuf. Process., 2012, 27(4), p 462–466.

    Article  CAS  Google Scholar 

  25. L.L. Wang, L. **, W.J. Huang, and J.X. Xue, Effect of Thermal Frequency on AA6061 Aluminum Alloy Double Pulsed Gas Metal Arc Welding, Mater. Manuf. Process., 2016, 31(16), p 2152–2157.

    Article  CAS  Google Scholar 

  26. L.L. Wang, H.L. Wei, J.X. Xue, and T. DebRoy, A Pathway to Microstructural Refinement through Double Pulsed Gas Metal Arc Welding, Scripta Mater., 2017, 134, p 61–65.

    Article  CAS  Google Scholar 

  27. K.Y. Wu, Z.Y. Liang, T. Yin, Z.W. He, and M. Zeng, Double Pulse Low-Frequency Modulation for High-Power Double-Wire Pulsed GMAW, ASME J. Manuf. Sci. Eng., 2018, 140(9), p 091004.

    Article  Google Scholar 

  28. K.Y. Wu, N. Ding, T. Yin, M. Zeng, and Z.Y. Liang, Effects of Single and Double Pulses on Microstructure and Mechanical Properties of Weld Joints During High-Power Double-Wire GMAW, J. Manuf. Process., 2018, 35, p 728–734.

    Article  Google Scholar 

  29. K.Y. Wu, J.T. Zhan, X.W. Cao, M. Zeng, and N. Ding, Metal Transfer of Aluminum Alloy Double-Wire Pulsed GMAW with a Median Waveform, J. Mater. Process. Tech., 2020, 286, p 116761.

    Article  CAS  Google Scholar 

  30. B. Mvola, P. Kah, and P. Layus, Review of Current Waveform Control Effects on Weld Geometry in Gas Metal Arc Welding Process, Int. J. Adv. Manuf. Technol., 2018, 96(9–12), p 4243–4265.

    Article  Google Scholar 

  31. I. Pires, L. Quintino, and R.M. Miranda, Analysis of the Influence of Shielding Gas Mixtures on the Gas Metal Arc Welding Metal Transfer Modes and Fume Formation Rate, Mater. Des., 2007, 28(5), p 1623–1631.

    Article  CAS  Google Scholar 

  32. T. Ueyama, T. Ohnawa, M. Tanaka, and K. Nakata, Occurrence of Arc Interaction in Tandem Pulsed Gas Metal Arc Welding, Sci. Technol. Weld. Joi., 2007, 12(6), p 523–529.

    Article  Google Scholar 

  33. X.P. Ding, H. Li, L. Yang, and Y. Gao, Numerical Simulation of Metal Transfer Process in Tandem GMAW, Int. J. Adv. Manuf. Technol., 2013, 69(1–4), p 107–112.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aobin Hong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., Tao, T., Wang, Y. et al. Metal Transfer Behavior in AA6061 Aluminum Alloy Double-Wire Median Pulsed Gas Metal Arc Welding. J. of Materi Eng and Perform 33, 2573–2584 (2024). https://doi.org/10.1007/s11665-023-08178-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08178-9

Keywords

Navigation