Log in

NiAl Coatings Produced by Magnetron Sputtering from Mosaic Targets

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, NiAl-based intermetallic films were obtained by magnetron sputtering of mosaic targets, consisting of nickel and aluminum. Two-segment target consisted of nickel and aluminum semicircular parts; six-segment target was assembled from nickel and aluminum alternating bars. The structure and properties of coatings were evaluated depending on the type of mosaic target, target-to-substrate distance (Ht-s) and substrate material. NiAl grains had predominant (111) or (110) crystallographic orientation parallel to the substrate surface. Sputtering of the six-segment target led to the uniform elemental composition of the coatings. When using the two-segment target, the heterogeneous distribution of Ni and Al in NiAl over the substrate was observed. Ni-rich regions of the coatings had a fine-grained structure, while Al-rich areas predominantly consisted of larger columnar grains. As the Ht-s distance decreased, the morphology of the surface of all films changed from a rough island-type to a smoother one. The correlations between the texture, composition of films, and sputtering conditions are described. The obtained results are analyzed and explained based on fundamental principles of films growth during magnetron sputtering. The nanohardness of the films varied in a range from 6 to 12 GPa, and the coatings possessed high wear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.T. Liu and J.G. Duh, Hardness Evolution of NiTi and NiTiAl Thin Films under Various Annealing Temperatures, Surf. Coatings Technol., 2008, 202(12), p 2737–2742.

    Article  CAS  Google Scholar 

  2. Q. Wu, S. Li, Y. Ma, and S. Gong, Study on Behavior of NiAl Coating with Different Ni/Al Ratios, Vacuum, 2013, 93, p 37–44.

    Article  CAS  ADS  Google Scholar 

  3. S. Singh, S. Chang, C.S. Kaira, J.K. Baldwin, N. Mara, and N. Chawla, Microstructure and Mechanical Properties of Co-Sputtered Al-SiC Composites, Mater. Des., 2019, 168, p 107670.

    Article  CAS  Google Scholar 

  4. S. Simões, F. Viana, A.S. Ramos, M.T. Vieira, and M.F. Vieira, Anisothermal Solid-State Reactions of Ni/Al Nanometric Multilayers, Intermetallics, 2011, 19(3), p 350–356.

    Article  Google Scholar 

  5. J. Noro, A.S. Ramos, and M.T. Vieira, Intermetallic Phase Formation in Nanometric Ni/Al Multilayer Thin Films, Intermetallics, 2008, 16(9), p 1061–1065.

    Article  CAS  Google Scholar 

  6. R.D. Noebe, R.R. Bowman, and M.V. Nathal, Physical and Mechanical Properties of the B2 Compound NiAl, Int. Mater. Rev., 1993, 38(4), p 193–232. https://doi.org/10.1179/imr.1993.38.4.193

    Article  CAS  Google Scholar 

  7. D.B. Miracle, Overview No 104 the Physical and Mechanical Properties of NiAl, Acta Metall. Mater., 1993, 41(3), p 649–684.

    Article  CAS  Google Scholar 

  8. V. Dolique, A.L. Thomann, P. Brault, Y. Tessier, and P. Gillon, Thermal Stability of AlCoCrCuFeNi High Entropy Alloy Thin Films Studied by In-Situ XRD Analysis, Surf. Coat. Technol., 2010, 204(12–13), p 1989–1992.

    Article  CAS  Google Scholar 

  9. V. Dolique, A.L. Thomann, P. Brault, Y. Tessier, and P. Gillon, Complex Structure/Composition Relationship in Thin Films of AlCoCrCuFeNi High Entropy Alloy, Mater. Chem. Phys., 2009, 117(1), p 142–147.

    Article  CAS  Google Scholar 

  10. L. **e, P. Brault, A.L. Thomann, X. Yang, Y. Zhang, and G. Shang, Molecular Dynamics Simulation of Al–Co–Cr–Cu–Fe–Ni High Entropy Alloy Thin Film Growth, Intermetallics, 2016, 68, p 78–86.

    Article  CAS  Google Scholar 

  11. X. Sun, X. Cheng, H. Cai, S. Ma, Z. Xu, and T. Ali, Microstructure, Mechanical and Physical Properties of FeCoNiAlMnW High-Entropy Films Deposited by Magnetron Sputtering, Appl. Surf. Sci., 2020, 507, p 145131.

    Article  CAS  Google Scholar 

  12. X. Feng, K. Zhang, Y. Zheng, H. Zhou, and Z. Wan, Effect of Zr Content on Structure and Mechanical Properties of (CrTaNbMoV)Zrx High-Entropy Alloy Films, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms., 2019, 457, p 56–62.

    Article  CAS  ADS  Google Scholar 

  13. B.R. Braeckman, F. Boydens, H. Hidalgo, P. Dutheil, M. Jullien, A.L. Thomann, and D. Depla, High Entropy Alloy Thin Films Deposited by Magnetron Sputtering of Powder Targets, Thin Solid Films, 2015, 580, p 71–76.

    Article  CAS  ADS  Google Scholar 

  14. Z.B. Bataeva, A.A. Ruktuev, I.V. Ivanov, A.B. Yurgin, and I.A. Bataev, Review of Alloys Developed Using the Entropy Approach, Obrab. Met. Work. Mater. Sci., 2021, 23(2), p 116–146.

    Google Scholar 

  15. X. Feng, K. Zhang, Y. Zheng, H. Zhou, and Z. Wan, Chemical State, Structure and Mechanical Properties of Multi-Element (CrTaNbMoV)Nx Films by Reactive Magnetron Sputtering, Mater. Chem. Phys., 2020, 239, p 121991.

    Article  CAS  Google Scholar 

  16. Y. Yang, M. Keunecke, C. Stein, L.J. Gao, J. Gong, X. Jiang, K. Bewilogua, and C. Sun, Formation of Ti2AlN Phase after Post-Heat Treatment of Ti–Al–N Films Deposited by Pulsed Magnetron Sputtering, Surf. Coat. Technol., 2012, 206(10), p 2661–2666.

    Article  CAS  Google Scholar 

  17. Y. Xu, G. Li, G. Li, F. Gao, and Y. **a, Effect of Bias Voltage on the Growth of Super-Hard (AlCrTiVZr)N High-Entropy Alloy Nitride Films Synthesized by High Power Impulse Magnetron Sputtering, Appl. Surf. Sci., 2021, 564, p 150417.

    Article  CAS  Google Scholar 

  18. V. Abhilash, M.A. Sumesh, and S. Mohan, Composition Analysis of NiTi Thin Films Sputtered from a Mosaic Target: Synthesis and Simulation, Smart Mater. Struct., 2005, 14(5), p S323–S328. https://doi.org/10.1088/0964-1726/14/5/023

    Article  CAS  ADS  Google Scholar 

  19. C. Espinoza Torres, A.M. Condó, N. Haberkorn, E. Zelaya, D. Schryvers, J. Guimpel, and F.C. Lovey, Structures in Textured Cu–Al–Ni Shape Memory Thin Films Grown by Sputtering, Mater. Charact., 2014, 96, p 256–262.

    Article  CAS  Google Scholar 

  20. P.Y. Li, H.M. Lu, S.C. Tang, and X.K. Meng, An In-Situ TEM Investigation on Microstructure Evolution of Ni-25 at.% Al Thin Films, J. Alloys Compd., 2009, 478(1–2), p 240–245.

    Article  CAS  Google Scholar 

  21. Z. Xu, P. Zhang, W. Wang, Q. Shi, H. Yang, D. Wang, Y. Hong, L. Wang, C. Guo, S. Lin, and M. Dai, AlCoCrNiMo High-Entropy Alloy as Diffusion Barrier between NiAlHf Coating and Ni-Based Single Crystal Superalloy, Surf. Coat. Technol., 2021, 414, p 127101.

    Article  CAS  Google Scholar 

  22. C. Zhang, K. Feng, Z. Li, F. Lu, J. Huang, Y. Wu, and P.K. Chu, Enhancement of Hardness and Thermal Stability of W-Doped Ni3Al Thin Films at Elevated Temperature, Mater. Des., 2016, 111, p 575–583.

    Article  CAS  Google Scholar 

  23. D. Zhong, J.J. Moore, E. Sutter, and B. Mishra, Microstructure, Composition and Oxidation Resistance of Nanostructured NiAl and Ni–Al–N Coatings Produced by Magnetron Sputtering, Surf. Coat. Technol., 2005, 200(5–6), p 1236–1241.

    Article  CAS  Google Scholar 

  24. A.S. Edelstein, R.K. Everett, G.Y. Richardson, S.B. Qadri, E.I. Altman, J.C. Foley, and J.H. Perepezko, Intermetallic Phase Formation during Annealing of Al/Ni Multilayers, J. Appl. Phys., 1994, 76(12), p 7850–7859. https://doi.org/10.1063/1.357893

    Article  CAS  ADS  Google Scholar 

  25. C.C. Wu and F.B. Wu, Microstructure and Mechanical Properties of Magnetron Co-Sputtered Ni-Al Coatings, Surf. Coat. Technol., 2009, 204(6–7), p 854–859.

    Article  CAS  Google Scholar 

  26. Y. Ding, Y. Zhang, D.O. Northwood, and A.T. Alpas, PVD NiAl Intermetallic Coatings: Microstructure and Mechanical Properties, Surf. Coat. Technol., 1997, 94–95, p 483–489.

    Article  Google Scholar 

  27. T.S. Ogneva, A.A. Ruktuev, D.V. Lazurenko, M. Khomyakov, and A. Karmanova, Microstructure and Mechanical Properties of Ni-Al Intermetallic Thin Coatings Produced by Magnetron Sputtering, IOP Conf. Ser. Mater. Sci. Eng., 2020, 795(1), p 12002. https://doi.org/10.1088/1757-899x/795/1/012002

    Article  CAS  Google Scholar 

  28. B. Rainer and W. Eckstein Eds., Sputtering by Particle Bombardment (Berlin), Springer-Verlag, Berlin Heidelberg, 2007

    Google Scholar 

  29. V. Kudinov and G. Bobrov (1992) “Nanesenie Pokrytij Napyleniem. Teoriya, Tekhnologiya, Oborudovanie, in Russian (Application of Coatings by Spraying. Theory, Technology, Equipment),” B.S. Mitin, Ed. (Moscow), Metallurgy

  30. J.-H. Hsieh and C. Li, Calculation of Sputtering Rate during a Plasma-Assisted Process, Jpn. J. Appl. Phys., 2003, 42(8), p 5295–5298. https://doi.org/10.1143/jjap.42.5295

    Article  CAS  ADS  Google Scholar 

  31. P. Ren, S. Zhu, and F. Wang, Microstructure and Oxidation Behavior of a Ni+CrAlYSiHfN/AlN Multilayer Coating Fabricated by Reactive Magnetron Sputtering, Corros. Sci., 2016, 104, p 197–206.

    Article  CAS  Google Scholar 

  32. C. Yang, Y. Hu, R. Shen, Y. Ye, S. Wang, and T. Hua, Fabrication and Performance Characterization of Al/Ni Multilayer Energetic Films, Appl. Phys. A, 2014, 114(2), p 459–464.

    Article  CAS  ADS  Google Scholar 

  33. J.T. Chang, A. Davison, J.L. He, and A. Matthews, Deposition of Ni–Al–Y Alloy Films Using a Hybrid Arc Ion Plating and Magnetron Sputtering System, Surf. Coat. Technol., 2006, 200(20–21), p 5877–5883.

    Article  CAS  Google Scholar 

  34. S. Hou, S. Zhu, T. Zhang, and F. Wang, A Magnetron Sputtered Microcrystalline β-NiAl Coating for SC Superalloys. Part I. Characterization and Comparison of Isothermal Oxidation Behavior at 1100 °C with a NiCrAlY Coating, Appl. Surf. Sci. North-Holland, 2015, 324, p 1–12.

    Article  CAS  ADS  Google Scholar 

  35. B. Ning, M. Shamsuzzoha, and M.L. Weaver, Influence of Processing Variables on the Properties of Dc Magnetron Sputtered NiAl Coatings Containing Hf Additions, J. Vac. Sci. Technol. A Vacuum. Surfaces Film, 2005, 23(1), p 44–54.

    Article  CAS  ADS  Google Scholar 

  36. Y.A.F.A.S. Dzhumaliev, and Yu.V. Nikulin, Effect of the Polarity of the Bias Voltage of the Substrate on the Texture Microstructure, and Magnetic Properties of Ni Films Obtained by Magnetron Sputtering, Solid state Phys., 2016, 58(6), p 1206–1215.

    Article  Google Scholar 

  37. X.-H. Xu, H.-S. Wu, C.-J. Zhang, and Z.-H. **, Morphological Properties of AlN Piezoelectric Thin Films Deposited by DC Reactive Magnetron Sputtering, Thin Solid Films, 2001, 388(1–2), p 62–67.

    Article  CAS  ADS  Google Scholar 

  38. J.A. Thornton, The Micristructure of Soutter-Deposited Coatings, J. Vac. Sci. Technol. A, 1986, 4(6), p 3059–3065.

    Article  CAS  Google Scholar 

  39. R.A.R.R. Messier and A.P. Giri, Revised Structure Zone Model for Thib Film Physical Structure, Vac. Sci. Technol. A, 1984, 2(2), p 500–503.

    Article  CAS  Google Scholar 

  40. D.-M. Mi, S.-L. Zhu, Y.-Q. Liang, Z.-Y. Li, Z.-D. Cui, X.-J. Yang, and A. Inoue, Zr55Al10Ni5Cu30 Amorphous Alloy Film Prepared by Magnetron Sputtering Method, Rare Met., 2021, 40(8), p 2237–2243.

    Article  CAS  Google Scholar 

  41. W.J. Lee, Y.K. Fang, J.-J. Ho, W.T. Hsieh, S.F. Ting, D. Huang, and F.C. Ho, Effects of Surface Porosity on Tungsten Trioxide (WO3) Films’ Electrochromic Performance, J. Electron. Mater., 2000, 29(2), p 183–187.

    Article  CAS  ADS  Google Scholar 

  42. L. Zhang, J. Huang, J. Yang, K. Tang, B. Ren, S. Zhang, and L. Wang, The Effects of Substrate Temperature on Properties of B and Ga Co-Doped ZnO Thin Films Grown by RF Magnetron Sputtering, Surf. Coatings Technol., 2016, 307, p 1129–1133.

    Article  CAS  Google Scholar 

  43. J. Lee, K.N. Hui, K.S. Hui, Y.R. Cho, and H.-H. Chun, Low Resistivity of Ni-Al Co-Doped ZnO Thin Films Deposited by DC Magnetron Sputtering at Low Sputtering Power, Appl. Surf. Sci., 2014, 293, p 55–61.

    Article  CAS  ADS  Google Scholar 

  44. I. Bataev, N.T. Panagiotopoulos, F. Charlot, A.M.J. Junior, M. Pons, G.A. Evangelakis, and A.R. Yavari, Structure and Deformation Behavior of Zr–Cu Thin Films Deposited on Kapton Substrates, Surf. Coatings Technol., 2014, 239, p 171–176.

    Article  CAS  Google Scholar 

  45. S.V. Kositsyn and I.I. Kositsyna, Fazovye i Strukturnye Prevrashcheniya v Splavah Na Osnove Monoalyuminida Nikelya [Phase and Structural Transformations in Alloys Based on Nickel Monoaluminide, in Russian], Usp. Fiz. Met., 2008, 9, p 195–258.

    Article  CAS  Google Scholar 

  46. R. Seymour, A. Hemeryck, K. Nomura, W. Wang, R.K. Kalia, A. Nakano, and P. Vashishta, Nanoindentation of NiAl and Ni3Al Crystals on (100), (110), and (111) Surfaces: A Molecular Dynamics Study, Appl. Phys. Lett., 2014, 104(14), p 141904. https://doi.org/10.1063/1.4867168

    Article  CAS  ADS  Google Scholar 

  47. J. Pfetzing-Micklich, C. Somsen, A. Dlouhy, C. Begau, A. Hartmaier, M.F.-X. Wagner, and G. Eggeler, On the Crystallographic Anisotropy of Nanoindentation in Pseudoelastic NiTi, Acta Mater., 2013, 61(2), p 602–616. https://doi.org/10.1016/j.actamat.2012.09.081

    Article  CAS  ADS  Google Scholar 

  48. T.L. Li, Y.F. Gao, H. Bei, and E.P. George, Indentation Schmid Factor and Orientation Dependence of Nanoindentation Pop-in Behavior of NiAl Single Crystals, J. Mech. Phys. Solids, 2011, 59(6), p 1147–1162. https://doi.org/10.1016/j.jmps.2011.04.003

    Article  CAS  ADS  Google Scholar 

  49. B. Ning, M. Shamsuzzoha, and M.L. Weaver, Microstructure and Properties of DC Magnetron Sputtered NiAl–Hf Coatings, Surf. Coat. Technol., 2004, 179(2), p 201–209. https://doi.org/10.1016/S0257-8972(03)00870-3

    Article  CAS  Google Scholar 

  50. R.J. Wasilewski, Elastic Constants and Young’s Modulus of NiAl, Trans. Met. Soc. AIME, 1966, 236, p 455–457.

    CAS  Google Scholar 

  51. W.S. Walston and R. Darolia, Effect of Alloying on Physical Properties of NiAl, MRS Online Proc. Libr., 1992, 288, p 237.

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded according to the Federal Task of Ministry of Science and Higher Education of the Russian Federation (project FSUN-2020-0014 (2019-0931): “Investigations of Metastable Structures Formed on Material Surfaces and Interfaces under Extreme External Impacts”. Structural research was conducted at NSTU Materials Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Ogneva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogneva, T.S., Ruktuev, A.A., Cherkasova, N.Y. et al. NiAl Coatings Produced by Magnetron Sputtering from Mosaic Targets. J. of Materi Eng and Perform 33, 1718–1731 (2024). https://doi.org/10.1007/s11665-023-08096-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08096-w

Keywords

Navigation