Log in

Comparative Study of Plasma Spray and Friction Stir Processing on Wear Properties of Mg-Zn-Dy Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Mg alloys are becoming increasingly popular as lightweight materials in recent years. Wear resistance, on the other hand, is a severe issue with Mg alloys. Plasma spray and friction stir processing (FSP) are being investigated in this context for develo** composite surfaces with improved surface characteristics. Scanning electron microscopy (SEM), energy dispersive spectroscopy, and x-ray diffraction are used to examine the microstructural changes and phase changes of all materials. After FSP, SEM analysis indicated that the coated particles were equally dispersed throughout the Mg matrix. The composite samples had the lowest wear rate as compared to other samples, according to the wear tests. In comparison to AC, the F-1 sample surface has much higher wear resistance. As a consequence, the findings of this investigation for the F-1 sample appear encouraging for biological wear resistant applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. X.N. Gu, S.S. Li, X.M. Li, and Y.B. Fan, Magnesium Based Degradable Biomaterials: A Review, Front. Mater. Sci., 2014, 8, p 200–218. https://doi.org/10.1007/s11706-014-0253-9

    Article  Google Scholar 

  2. H. Han, S. Loffredo, I. Jun, J. Edwards, Y. Kim, H. Seok, F. Witte, D. Mantovani, and S. Glyn-jones, Current Status and Outlook on the Clinical Translation of Biodegradable Metals, Mater. Today, 2019, 23, p 57–71. https://doi.org/10.1016/j.mattod.2018.05.018

    Article  CAS  Google Scholar 

  3. X. Li, X. Liu, S. Wu, K.W.K. Yeung, Y. Zheng, and P.K. Chu, Design of Magnesium Alloys with Controllable Degradation for Biomedical Implants: From Bulk to Surface, Acta Biomater., 2016, 45, p 2–30. https://doi.org/10.1016/j.actbio.2016.09.005

    Article  CAS  PubMed  Google Scholar 

  4. J. Chen, L. Tan, and K. Yang, Recent Advances on the Development of Biodegradable Magnesium Alloys: A Review, Mater. Technol., 2016, 31, p 681–688. https://doi.org/10.1080/10667857.2016.1212587

    Article  ADS  CAS  Google Scholar 

  5. M. Prakasam, J. Locs, K. Salma-Ancane, D. Loca, A. Largeteau, and L. Berzina-Cimdina, Biodegradable Materials and Metallic Implants—A Review, J. Funct. Biomater., 2017, 8, p 44. https://doi.org/10.3390/jfb8040044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. S. You, Y. Huang, K.U. Kainer, and N. Hort, Recent Research and Developments on Wrought Magnesium Alloys, J. Magnes. Alloys, 2017, 5, p 239–253. https://doi.org/10.1016/j.jma.2017.09.001

    Article  CAS  Google Scholar 

  7. M. Rahman, N.K. Dutta, and N. Roy Choudhury, Magnesium Alloys With Tunable Interfaces as Bone Implant Materials, Front. Bioeng. Biotechnol., 2020 https://doi.org/10.3389/fbioe.2020.00564

    Article  PubMed  PubMed Central  Google Scholar 

  8. X.N. Gu, H.M. Guo, F. Wang, Y. Lu, W.T. Lin, J. Li, and Y.B. Fan, Degradation, Hemolysis, and Cytotoxicity of Silane Coatings on Biodegradable Magnesium Alloy, Mater. Lett., 2017, 193, p 266–269. https://doi.org/10.1016/j.matlet.2017.01.136

    Article  CAS  Google Scholar 

  9. Z.A. Uwais, M.A. Hussein, M.A. Samad, and N. Al-Aqeeli, Surface Modification of Metallic Biomaterials for Better Tribological Properties: A Review, Arab. J. Sci. Eng., 2017, 42, p 4493–4512. https://doi.org/10.1007/s13369-017-2624-x

    Article  CAS  Google Scholar 

  10. A. Prasad, J. Jain, and N.N. Gosvami, Effect of Minor La Addition on Wear Behaviour of Mg-10Dy Alloy, Wear, 2021, 486–487, p 204121. https://doi.org/10.1016/j.wear.2021.204121

    Article  CAS  Google Scholar 

  11. I. Aatthisugan and R. Murugesan, Influence of Silicon Addition on Mechanical Properties and Wear Behaviour of AZ91D Magnesium Alloy Using Stir Casting Method, Silicon, 2022 https://doi.org/10.1007/s12633-021-01606-2

    Article  Google Scholar 

  12. Q. Chen, Z. Zhao, Q. Zhu, G. Wang, and K. Tao, Cerium Addition Improved the Dry Sliding Wear Resistance of Surface Welding AZ91 Alloy, Materials, 2018, 11(2), p 250. https://doi.org/10.3390/ma11020250

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. A.B. Sankuru, H. Sunkara, S. Sethuraman, K. Gudimetla, B. Ravisankar, and S.P. Kumaresh Babu, Effect of Processing Route on Microstructure, Mechanical and Dry Sliding Wear Behavior of Commercially Pure Magnesium Processed by ECAP with Back Pressure, Trans. Indian Inst. Metals, 2021, 74, p 2659–2669. https://doi.org/10.1007/s12666-021-02340-4

    Article  CAS  Google Scholar 

  14. C.N. Panagopoulos, K.G. Georgarakis, and A. Anagnostopoulou, The Influence of Grain Size on the Sliding Wear Behaviour of Zinc, Mater. Lett., 2006, 60, p 133–136. https://doi.org/10.1016/j.matlet.2005.08.003

    Article  CAS  Google Scholar 

  15. P. Abachi, A. Masoudi, and K. Purazrang, Dry Sliding Wear Behavior of SiCP/QE22 Magnesium Alloy Matrix Composites, Mater. Sci. Eng. A, 2006, 435–436, p 653–657. https://doi.org/10.1016/j.msea.2006.08.020

    Article  CAS  Google Scholar 

  16. Q. Chen, K. Li, Y. Liu, Z. Zhao, K. Tao, and Q. Zhu, Effects of Heat Treatment on the Wear Behavior of Surfacing AZ91 Magnesium Alloy, J. Mater. Res., 2017, 32, p 2161–2168. https://doi.org/10.1557/jmr.2017.186

    Article  ADS  CAS  Google Scholar 

  17. H. Yuan, H. Zhai, W. Li, D. He, B. Cheng, and L. Feng, Study of Dry Sliding Wear Behavior of a Fe-Based Amorphous Coating Synthesized by Detonation Spraying on an AZ31B Magnesium Alloy, J. Mater. Eng. Perform., 2021, 30, p 905–917. https://doi.org/10.1007/s11665-020-05357-w

    Article  CAS  Google Scholar 

  18. M. Dinu, A.A. Ivanova, M.A. Surmeneva, M. Braic, A.I. Tyurin, V. Braic, R.A. Surmenev, and A. Vladescu, Tribological Behaviour of RF-Magnetron Sputter Deposited Hydroxyapatite Coatings in Physiological Solution, Ceram. Int., 2017, 43, p 6858–6867. https://doi.org/10.1016/j.ceramint.2017.02.106

    Article  CAS  Google Scholar 

  19. J. Chen, S. Lu, L. Tan, I.P. Etim, and K. Yang, Comparative Study on Effects of Different Coatings on Biodegradable and Wear Properties of Mg-2Zn-1Gd-0.5 Zr Alloy, Surf. Coat. Technol., 2018, 352, p 273–284. https://doi.org/10.1016/j.surfcoat.2018.08.028

    Article  CAS  Google Scholar 

  20. D. Zhang, Y. Ge, G. Liu, F. Gao, and P. Li, Investigation of Tribological Properties of Micro-Arc Oxidation Ceramic Coating on Mg Alloy Under Dry Sliding Condition, Ceram. Int., 2018, 44, p 16164–16172. https://doi.org/10.1016/j.ceramint.2018.05.137

    Article  Google Scholar 

  21. R.S. Mishra, Friction Stir Welding and Processing, Mater. Sci. Eng. R, 2005, 50, p 1–78. https://doi.org/10.1016/j.mser.2005.07.001

    Article  CAS  Google Scholar 

  22. R. Sasidharan, M. Frasnelli, and V.M. Sglavo, HA/β -TCP Plasma Sprayed Coatings on Ti Substrate for Biomedical Applications, Ceram. Int., 2018, 44, p 1328–1333. https://doi.org/10.1016/j.ceramint.2017.08.113

    Article  CAS  Google Scholar 

  23. R. Palanivelu and A.R. Kumar, Scratch and Wear Behaviour of Plasma Sprayed Nano Ceramics Bilayer Al2O3–13 wt.%TiO2/Hydroxyapatite Coated on Medical Grade Titanium Substrates in SBF Environment, Appl. Surf. Sci., 2014, 315, p 372–379. https://doi.org/10.1016/j.apsusc.2014.07.167

    Article  ADS  CAS  Google Scholar 

  24. P. Bansal, G. Singh, and H.S. Sidhu, Improvement of Surface Properties and Corrosion Resistance of Ti13Nb13Zr Titanium Alloy by Plasma-Sprayed HA/ZnO Coatings for Biomedical Applications, Mater. Chem. Phys., 2021, 257, p 123738. https://doi.org/10.1016/j.matchemphys.2020.123738

    Article  CAS  Google Scholar 

  25. C.D. Prasad, S. Joladarashi, M.R. Ramesh, M.S. Srinath, and B.H. Channabasappa, Comparison of Microstructural and Sliding Wear Resistance of HVOF Coated and Microwave Treated CoMoCrSi-WC + CrC + Ni and CoMoCrSi-WC + 12Co Composite Coatings Deposited on Titanium Substrate, Silicon, 2020, 12, p 3027–3045. https://doi.org/10.1007/s12633-020-00398-1

    Article  CAS  Google Scholar 

  26. C.D. Prasad, A. Jerri, and M.R. Ramesh, Characterization and Sliding Wear Behavior of Iron-Based Metallic Coating Deposited by HVOF Process on Low-Carbon Steel Substrate, J. Bio Tribo Corr., 2020, 6, p 69. https://doi.org/10.1007/s40735-020-00366-7

    Article  Google Scholar 

  27. C.D. Prasad, S. Joladarashi, M.R. Ramesh, M.S. Srinath, and B.H. Channabasappa, Effect of Microwave Heating on Microstructure and Elevated Temperature Adhesive Wear Behavior of HVOF Deposited CoMoCrSi-Cr3C2 Coating, Surf. Coat. Technol., 2019, 374, p 291–304. https://doi.org/10.1016/j.surfcoat.2019.05.056

    Article  CAS  Google Scholar 

  28. H.S. Arora, H. Singh, and B.K. Dhindaw, Wear Behaviour of a Mg Alloy Subjected to Friction Stir Processing, Wear, 2013, 303, p 65–77. https://doi.org/10.1016/j.wear.2013.02.023

    Article  CAS  Google Scholar 

  29. Y. Gao, M. Jie, and Y. Liu, Mechanical Properties of Al2O3 Ceramic Coatings Prepared by Plasma Spraying on Magnesium Alloy, Surf. Coat. Technol., 2017, 315, p 214–219. https://doi.org/10.1016/j.surfcoat.2017.02.026

    Article  CAS  Google Scholar 

  30. S. Saber-samandari, K. Alamara, and S. Saber-samandari, Calcium Phosphate Coatings : Morphology, Micro-Structure and Mechanical Properties, Ceram. Int., 2014, 40, p 563–572. https://doi.org/10.1016/j.ceramint.2013.06.038

    Article  CAS  Google Scholar 

  31. C. Domínguez-trujillo, E. Peón, E. Chicardi, H. Pérez, J.A. Rodríguez-ortiz, and J.J. Pavón, Surface & Coatings Technology Sol-gel Deposition of Hydroxyapatite Coatings on Porous Titanium for Biomedical Applications, Surf. Coat. Technol., 2018, 333, p 158–162. https://doi.org/10.1016/j.surfcoat.2017.10.079

    Article  CAS  Google Scholar 

  32. K.R. Rakesh, S. Bontha, M.R. Ramesh, M. Das, and V. Krishna, Applied Surface Science Laser Surface Melting of Mg-Zn-Dy Alloy for Better Wettability and Corrosion Resistance for Biodegradable Implant Applications, Appl. Surf. Sci., 2019, 480, p 70–82. https://doi.org/10.1016/j.apsusc.2019.02.167

    Article  ADS  CAS  Google Scholar 

  33. U. Rokkala, A. Jana, S. Bontha, M.R. Ramesh, and V.K. Balla, Comparative Investigation of Coating and Friction Stir Processing on mg-Zn-Dy Alloy for Improving Antibacterial, Bioactive and Corrosion Behaviour, Surf. Coatings Technol., 2021, 425, p 127708. https://doi.org/10.1016/j.surfcoat.2021.127708

    Article  CAS  Google Scholar 

  34. U. Rokkala, S. Bontha, M.R. Ramesh, V. Krishna, A. Srinivasan, and S.V. Kailas, Tailoring Surface Characteristics of Bioabsorbable Mg-Zn-Dy Alloy Using Friction Stir Processing for Improved Wettability and Degradation Behavior, J. Mater. Res. Technol., 2021, 12, p 1530–1542. https://doi.org/10.1016/j.jmrt.2021.03.057

    Article  CAS  Google Scholar 

  35. W. Conshohocken, Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus 1, Wear, 2007 https://doi.org/10.1520/G0099-17.Copyright

    Article  Google Scholar 

  36. I. Ganesh, A Review on Magnesium Aluminate ( MgAl2O4) Spinel : Synthesis, Process. Appl., 2013, 58, p 63–112. https://doi.org/10.1179/1743280412Y.0000000001

    Article  CAS  Google Scholar 

  37. N. Hansen, Hall-Petch Relation and Boundary Strengthening, Scr. Mater., 2004, 51, p 801–806. https://doi.org/10.1016/j.scriptamat.2004.06.002

    Article  CAS  Google Scholar 

  38. S.C. Lim and M.F. Ashby, Overview no. 55 Wear-Mechanism Maps, Acta Metall., 1987, 35(1), p 1–24.

    Article  CAS  Google Scholar 

  39. N.J.R. Mikkelsen, J. Chevallier, G. So/rensen, and C.A. Straede, Friction and Wear Measurements of Sputtered MoS x Films Amorphized by Ion Bombardment, Appl. Phys. Lett., 1988, 52(14), p 1130–1132. https://doi.org/10.1063/1.99666

    Article  ADS  CAS  Google Scholar 

  40. Y. Chen, K. Yang, H. Lin, F. Zhang, B. **ong, H. Zhang, and C. Zhang, Important Contributions of Multidimensional Nanoadditives on the Tribofilms: From Formation Mechanism to Tribological Behaviors, Compos. B. Eng., 2022, 234. https://doi.org/10.1016/j.compositesb.2022.109732

  41. H.S. Arora, H. Singh, and B.K. Dhindaw, Some Observations on Microstructural Changes in a Mg-Based AE42 Alloy Subjected to Friction Stir Processing, Metall. Mater. Trans. B, 2012, 43, p 92–108. https://doi.org/10.1007/s11663-011-9573-7

    Article  CAS  Google Scholar 

  42. M.V. Farahani, E. Emadoddin, M. Emamy, and A.H. Raouf, Effect of Grain Refinement on Mechanical Properties and Sliding Wear Resistance of Extruded Sc-free 7042 Aluminum Alloy, Mater. Des., 2014, 1980–2015(54), p 361–367. https://doi.org/10.1016/j.matdes.2013.08.044

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere thanks to Central research facility (CRF), National Institute of Technology, Karnataka for providing access to scanning electron microscope and optical profilometer facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uzwalkiran Rokkala.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rokkala, U., Suresh, G. & Ramesh, M.R. Comparative Study of Plasma Spray and Friction Stir Processing on Wear Properties of Mg-Zn-Dy Alloy. J. of Materi Eng and Perform 33, 1578–1587 (2024). https://doi.org/10.1007/s11665-023-08087-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08087-x

Keywords

Navigation