Log in

A Study of Compression Deformation Behavior of γ/α2 Interface in γ(TiAl) Alloy Using Molecular Dynamics Simulation

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

From a material design perspective, interface structures affected the mechanical performance of materials. However, the effects of different types of interface structures on the mechanical properties of TiAl/Ti3Al interfaces had not been quantified. In this research work, we used the molecular dynamics (MD) method to simulate the compressive deformation process of the γ(TiAl)/α2(Ti3Al) interface. The results indicated that the γ(TiAl)/α2(Ti3Al) semi-coherent interface had better mechanical properties. The fracture mechanism of the semi-coherent interface was different from that of the coherent interface. By analyzing the movement of dislocations during the compression deformation process of the γ(TiAl)/α2(Ti3Al) coherent interface, the ripple dislocations were found to increase, and to be connected to each other to form a kink band, thus causing stress concentration, and eventually, material fracture. In the process of compression fracture of the γ(TiAl)/α2(Ti3Al) semi-coherent interface, the lattice distortion areas at the interface were used as dislocation nucleation points to produce dislocations on both sides of the interface. The interface hindered the propagation of dislocations and absorbed the dislocations. It also played a role in improving the strength of the material. Temperature had little effect on the fracture mechanism of the γ(TiAl)/α2(Ti3Al) interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Y.B. Ren, Y. Han, S. Yan, J.P. Sun, Z.X. Duan, H. Chen, and X. Ran, Microstructure and Mechanical Properties of Powder Metallurgical TiAl-based Alloy Made by Micron Bimodal-sized Powders, J. Mater. Eng. Perform., 2021, 30, p 269–280.

    Article  CAS  Google Scholar 

  2. B. Chen, Z.S. Xu, Y. Liu, B. Xue, and W.D. Ma, Tribological Performance and Tribofilm Evolution of TiAl Matrix Composites with Silver and Titanium Diboride at Elevated Temperatures, J. Mater. Eng. Perform., 2020, 29, p 5655–5662.

    Article  CAS  Google Scholar 

  3. R.R. Xu and M.Q. Li, Quantitative Characterization of β-solidifying γ-TiAl Alloy with Duplex Structure, T Nonferr. Metal. Soc., 2021, 7, p 1993–2004.

    Article  Google Scholar 

  4. H.D. Li, B.B. Wang, L.S. Luo, X.W. Li, Y.J. Xu, B.Q. Li, L. Wang, Y.Q. Su, J.J. Guo, and H.Z. Fu, Design a Novel TiAl/Ti2AlNb Laminated Composite with High Toughness Prepared by foil-foil Metallurgy, Mater. Lett., 2021, 303, p 130463.

    Article  CAS  Google Scholar 

  5. M.N. Mathabathe, A.S. Bolokang, G. Govender, C.W. Siyasiya, and R.J. Mostert, Characterization of the Nitrided γ-Ti-46Al-2Nb and γ-Ti-46Al-2Nb-0.7Cr-0.3Si Intermetallic Alloys, Mater. Chem. Phys., 2021, 257, p 123703.

    Article  CAS  Google Scholar 

  6. Y. Chen, Y.D. Cao, Z.X. Qi, and G. Chen, Increasing High-temperature Fatigue Resistance of Polysynthetic Twinned TiAl Single Crystal by Plastic Strain Delocalization, J. Mater. Sci. Technol., 2021, 93, p 53–59.

    Article  CAS  Google Scholar 

  7. K. Yang, H.T. Bian, L.F. Wang, H.R. Ma, H.B. Lin, W.B. Zhao, X.X. Li, Z.Z. Cao, and S.T. Cao, Investigation of Silver Synthesis to Reduce Friction and Wear of TiAl-Based Composites, J. Mater. Eng. Perform., 2020, 29, p 2524–2530.

    Article  CAS  Google Scholar 

  8. S. Saeedipour and A. Kermanpur, On the Microstructure and Solidification Behavior of N-bearing Ti-46Al-8Ta (at.%) Intermetallic Alloys, J. Mater. Eng. Perform., 2019, 28, p 6438–6448.

    Article  CAS  Google Scholar 

  9. H.W. Liu, D.P. Bishop, and K.P. Plucknett, Densification Behaviour and Microstructural Evolution of Ti-48Al Consolidated by Spark Plasma Sintering, J. Mater. Sci., 2017, 52, p 613–627.

    Article  CAS  Google Scholar 

  10. M. Mitoraj-Królikowska and E. Godlewska, Magnetron-sputtered Ni-Cr and Ti-Si Layers to Protect Ti-46Al-8Nb (at.%) Substrates Against Gas Absorption, J. Mater. Eng. Perform., 2019, 28, p 6258–6267.

    Article  Google Scholar 

  11. L.K. Wu, J.J. Wu, W.Y. and Wu et al., High Temperature Oxidation Resistance of γ-TiAl Alloy with Pack Aluminizing and Electrodeposited SiO2 Composite Coating, Corros. Sci., 2019, 146, p 18–27.

    Article  CAS  Google Scholar 

  12. J. Ding, M. Zhang, and Y. Liang et al., Enhanced High-temperature Tensile Property by Gradient Twin Structure of Duplex High-Nb-containing TiAl Alloy, Acta Mater., 2018, 16, p 1–11.

    Article  Google Scholar 

  13. C.X. Zou, J.S. Li, L. Zhu, Y. Zhang, G. Yao, B. Tang, J. Wang, H.C. Kou, H.F. Song, and W.Y. Wang, Electronic Structures and Properties of TiAl/Ti2AlNb Heterogeneous Interfaces: A Comprehensive First-Principles Study, Intermetallics, 2021, 133, p 107173.

    Article  CAS  Google Scholar 

  14. G.G. Li, M. Zeng, C.M. Liu, F.F. Wang, Y.J. Guo, J.Q. Wang, Y. Yang, W.G. Li, and Y. Wang, Microstructure and Tribological Behavior of Laser Cladding TiAlSi Composite Coatings Reinforced by Alumina–Titania Ceramics on Ti-6Al-4V Alloys, Mater. Chem. Phys., 2020, 240, p 122271.

    Article  CAS  Google Scholar 

  15. X.S. Yang, X.W. Li, Y.H. Peng, D.H. Li, T.T. Zhang, G.H. Fan, C. Xu, H. Wu, and J. Zhang, Fabrication and Deformation Behavior of a Novel Laminated TiAl Matrix Composite, Mater. Sci. Eng. A Struct., 2021, 821, p 141603.

    Article  CAS  Google Scholar 

  16. X.M. Zhang, B. Zhang, Y. Mu, S. Shao, C.D. Wick, B.R. Ramachandran, and W.J. Meng, Mechanical Failure of Metal/Ceramic Interfacial Regions under Shear Loading, Acta Mater., 2017, 138, p 224–236.

    Article  CAS  Google Scholar 

  17. N. Li, H. Wang, A. Misra, and J. Wang, In situ Nanoindentation Study of Plastic Co-deformation in Al-TiN Nanocomposites, Sci. Rep., 2014, 4, p 6633.

    Article  CAS  Google Scholar 

  18. N. Liu and X.Y. Liu, (2018) Review: Mechanical Behavior of Metal/Ceramic Interfaces in Nanolayered Composites—Experiments and Modeling, J. Mater. Sci., 2018, 53, p 5562–5583.

    Article  Google Scholar 

  19. M. Kanani, A. Hartmaier, and R. Janisch, Interface Properties in Lamellar TiAl Microstructures from Density Functional Theory, Intermetallics, 2014, 54, p 154–163.

    Article  CAS  Google Scholar 

  20. M. Kanani, A. Hartmaier, and R. Janisch, Stacking fault based analysis of shear mechanisms at interfaces in lamellar TiAl alloys, Acta Mater., 2016, 106, p 208–218.

    Article  CAS  Google Scholar 

  21. M. Gerboth, W. Setyawan, and C.H. Henager Jr., Displacement Threshold Energy and Recovery in an Al-Ti Nanolayered System with Intrinsic Point Defect Partitioning, Comput. Mater. Sci., 2014, 85, p 269–279.

    Article  CAS  Google Scholar 

  22. J.Y. Liu, L.Q. Zhang, and G.W. Ge, A Study of Residual Ti3Al in γ(TiAl) Sheets using Mismatch Theory, Mater. Lett., 2020, 278, p 128423.

    Article  CAS  Google Scholar 

  23. D.C. Luo, Z.Y. Rui, R. Fu, L. Zhang, H. Cao, and C.F. Yan, Molecular Dynamics Research of Crack Propagation of Single Crystal γ-TiAl Alloy, Rare. Met. Mater. Eng., 2017, 46, p 3792–3798.

    CAS  Google Scholar 

  24. W. Li, Y.J. Yin, and Q. Xu et al., Tensile Behavior of γ/α2 Interface System in Lamellar TiAl Alloy via Molecular Dynamics, Comput. Mater. Sci., 2019, 159, p 397–402.

    Article  CAS  Google Scholar 

  25. W. Li, W. Yu, and Q. Xu et al., Effects of γ/γ Interfaces in TiAl Lamellae Subjected to Uniaxial Tensile Loading, Comput. Mater. Sci., 2020, 172, p 109361.

    Article  CAS  Google Scholar 

  26. H. Ganesan, I. Scheider, and C.J. Cyron, Quantifying the High-temperature Separation Behavior of Lamellar Interface in γ-Titanium Aluminide under Tensile Loading by Molecular Dynamics, Front. Mater., 2021, 7, p 602567.

    Article  Google Scholar 

  27. R. Fu, Z.Y. Rui, and Y. Dong et al., Effects of γ/γ Lamellar Interfaces on Interlamellar Crack Propagation Behaviors of TiAl Alloys, Comput. Mater. Sci., 2021, 194, p 110428.

    Article  CAS  Google Scholar 

  28. H. Ganesan, I. Scheider, and C.J. Cyron, Understanding Creep in TiAl Alloys on the Nanosecond Scale by Molecular Dynamics Simulations, Mater. Des., 2021, 15, p 110282.

    Article  Google Scholar 

  29. K.X. Lin, M. Zeng, and H.M. Chen et al., Dynamic Strength, Reinforcing Mechanism and Damage of Ceramic Metal Composites, Int. J. Mech. Sci., 2022, 231, p 107580.

    Article  Google Scholar 

  30. S. Plimpton, Fast Parallel Algorithms for Short-range Molecular Dynamics, J. Comput. Phys., 1995, 117, p 1–19.

    Article  CAS  Google Scholar 

  31. A. Stukowski, Visualization and Analysis of Atomistic Simulation Data with OVITO-the Open Visualization Tool, Model. Simul. Mater. Sci. Eng., 2010, 18, p 015012.

    Article  Google Scholar 

  32. R.R. Zope and Y. Mishin, Interatomic Potentials for Atomistic Simulations of the Ti-Al System, Phys. Rev. B, 2003, 68, p 024102.

    Article  Google Scholar 

  33. C.L. Kelchner, S.J. Plimpton, and C.J. Hamilton, Dislocation Nucleation and Defect Structure during Surface Indentation, Phys. Rev. B, 1998, 58, p 11085–11088.

    Article  CAS  Google Scholar 

  34. A. Stukowski, V.V. Bulatov, and A. Arsenlis, Automated Identification and Indexing of Dislocations in Crystal Interfaces, Modell. Simul. Mater. Sci. Eng., 2021, 20, p 085007.

    Article  Google Scholar 

  35. M.W. Barsoum and G.J. Tucker, Deformation of Layered Solids: Ripplocations Not Basal Dislocations, Scripta Mater., 2017, 139, p 166–172.

    Article  CAS  Google Scholar 

  36. L. Pei, Atomic-scale Investigation on the Ti2AlN/TiAl Interface Models and Deformation Mechanisms, Harbin Institute of Technology, Harbin, 2019.

    Google Scholar 

  37. X.L. Han, P. Liu, D.L. Sun, and Q. Wang, Quantifying the Role of Interface Atomic Structure in the Compressive Response of Ti2AlN/TiAl Composite using MD Simulations, J. Mater. Sci., 2019, 54, p 5536–5550.

    Article  CAS  Google Scholar 

  38. J. Wang, R.G. Hoagland, J.P. Hirth, and A. Mira, Atomistic Modeling of the Interaction of Glide Dislocations with ‘“Weak”’ Interfaces, Acta Mater., 2008, 56, p 5685–5693.

    Article  CAS  Google Scholar 

  39. S. Shao and S.N. Medyanik, Interaction of Dislocations with Incoherent Interfaces in Nanoscale FCC-BCC Metallic Bi-layers, Modell. Simul. Mater. Sci. Eng., 2010, 18, p 055010.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 51871012), Bei**g Natural Science Foundation (No. 2162024), Fundamental Research Funds for the Central Universities (No. FRF-GF-19-023B), and National Program on Key Basic Research Project (973 Program) (No. 2011CB605502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laiqi Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zhang, L. A Study of Compression Deformation Behavior of γ/α2 Interface in γ(TiAl) Alloy Using Molecular Dynamics Simulation. J. of Materi Eng and Perform 33, 483–495 (2024). https://doi.org/10.1007/s11665-023-07984-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-07984-5

Keywords

Navigation