Log in

Improving the Cold Thermal Energy Storage Performance of Paraffin Phase Change Material by Compositing with Graphite, Expanded Graphite, and Graphene

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The goal of this research is to compare the thermal energy storage of the composites of graphene/paraffin and expanded graphite/paraffin for low-temperature applications and understand the role of graphene and expanded graphite in this regard. Paraffin with 5 °C phase change temperature (Pn5) was employed as the phase change material (PCM). It was integrated into graphite, expanded graphite, and two types of graphene to improve its thermal energy storage performance. Expanded graphite and graphene absorbents with porous structures could efficiently absorb Pn5 with only a minor drop in the latent heat of fusion (below 6%). Moreover, 1:10 weight ratio expanded graphite-Pn5 and 1:10 graphene-Pn5 composites possessed 0.923 and 0.660 W m−1 K−1 thermal conductivities, which are about 4.8 and 3.4 times that of the neat Pn5, respectively. Besides, regarding the differential scanning calorimetry (DSC) results, the variation in the phase change temperatures of the fabricated composite PCMs in comparison with the pure PCM was negligible. The heat storage behavior of the probing PCMs in cold environments was simulated. The simulation results exhibit that when the charging target temperature for the PCMs placed in the four side walls of a modeled room is 0 °C, Pn5 reaches this temperature from the initial 23 °C temperature after 30.6 h, whereas the storage time for 1:10 weight ratio graphene-Pn5 is 10.8% shorter than that of Pn5. Finally, the 1:10 graphene-Pn5 composite PCM is the most propitious one for cold thermal energy storage applications in buildings and containers due to its extreme thermal conductivity, satisfactory phase change temperature as well as the superb latent heat storage capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. Sudheer and K.N. Prabhu, Understanding Solidification Behavior of Salt Phase Change Material with Added Carbon Nanoparticles Using Computer-Aided Cooling Curve Analysis, J. Mater. Eng. Perform., 2022, 31(1), p 383–389.

    Article  Google Scholar 

  2. D.N. Nkwetta and F. Haghighat, Thermal Energy Storage with Phase Change Material—A State-of-the Art Review, Sustain. Cities Soc., 2014, 10, p 87–100.

    Article  Google Scholar 

  3. M. Shaker et al., On the Relationship Between the Porosity and Initial Coulombic Efficiency of Porous Carbon Materials for the Anode in Lithium-Ion Batteries, Electron. Mater. Lett., 2022, 18(4), p 400–406.

    Article  CAS  Google Scholar 

  4. M. Shaker et al., Prediction of the Lithium Storage Capacity of Hollow Carbon Nano-Spheres Based on their Size and Morphology, J. Mater. Sci. Mater. Electron., 2022 https://doi.org/10.1007/s10854-022-08222-9

    Article  Google Scholar 

  5. P. Arce et al., Overview of Thermal Energy Storage (TES) Potential Energy Savings and Climate Change Mitigation in Spain and Europe, Appl. Energy, 2011, 88(8), p 2764–2774.

    Article  Google Scholar 

  6. I. Dincer and M.A. Rosen, Thermal Energy Storage: Systems and Applications, Wiley, New York, 2021.

    Book  Google Scholar 

  7. L. Liu et al., Research on Performance and Safety of Composite Inorganic Phase-Change Materials (NaNO3/SiO2/C) under Low-Temperature Cold Shock, J. Mater. Eng. Perform., 2021, 30(2), p 894–904.

    Article  CAS  Google Scholar 

  8. B. Xu, P. Li, and C. Chan, Application of Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants: A Review to Recent Developments, Appl. Energy, 2015, 160, p 286–307.

    Article  Google Scholar 

  9. K. Chen et al., Design of Battery Thermal Management System based on Phase Change Material and Heat Pipe, Appl. Therm. Eng., 2021, 188, p 116665.

    Article  Google Scholar 

  10. A. Crespo et al., Latent Thermal Energy Storage for Solar Process Heat Applications at Medium-High Temperatures – A Review, Sol. Energy, 2019, 192, p 3–34.

    Article  Google Scholar 

  11. H. Selvnes et al., Review on Cold Thermal Energy Storage Applied to Refrigeration Systems using Phase Change Materials, Therm. Sci. Eng. Prog., 2021, 22, p 100807.

    Article  Google Scholar 

  12. S.A. Mohamed et al., A Review on Current Status and Challenges of Inorganic Phase Change Materials for Thermal Energy Storage Systems, Renew. Sustain. Energy Rev., 2017, 70, p 1072–1089.

    Article  CAS  Google Scholar 

  13. M.M. Umair et al., Novel Strategies and Supporting Materials Applied to Shape-Stabilize Organic Phase Change Materials for Thermal Energy Storage–A Review, Appl. Energy, 2019, 235, p 846–873.

    Article  CAS  Google Scholar 

  14. E. Oró et al., Review on Phase Change Materials (PCMs) for Cold Thermal Energy Storage Applications, Appl. Energy, 2012, 99, p 513–533.

    Article  Google Scholar 

  15. T. Kousksou et al., Paraffin Wax Mixtures as Phase Change Materials, Sol. Energy Mater. Sol. Cells, 2010, 94(12), p 2158–2165.

    Article  CAS  Google Scholar 

  16. A. Schlatmann and J. Fortuin, District heating for complete HVAC: application of absorption type chillers for cooling of large building by means of heat from district heating. in 19th International Congress of Refrigeration Proceedings. 1995

  17. A. Sarı and A. Karaipekli, Thermal Conductivity and Latent Heat Thermal Energy Storage Characteristics of Paraffin/Expanded Graphite Composite as Phase Change Material, Appl. Therm. Eng., 2007, 27(8), p 1271–1277.

    Article  Google Scholar 

  18. X. Li et al., Development of Granular Expanded Perlite/Paraffin Phase Change Material Composites and Prevention of Leakage, Sol. Energy, 2016, 137, p 179–188.

    Article  CAS  Google Scholar 

  19. Z. Liu et al., A Review on Macro-Encapsulated Phase Change Material for Building Envelope Applications, Build. Environ., 2018, 144, p 281–294.

    Article  Google Scholar 

  20. X. Guo, S. Zhang, and J. Cao, An Energy-Efficient Composite by using Expanded Graphite Stabilized Paraffin as Phase Change Material, Compos. A Appl. Sci. Manuf., 2018, 107, p 83–93.

    Article  CAS  Google Scholar 

  21. A. Alrashdan, A.T. Mayyas, and S. Al-Hallaj, Thermo-Mechanical Behaviors of the Expanded Graphite-Phase Change Material Matrix used for Thermal Management of Li-Ion Battery Packs, J. Mater. Process. Technol., 2010, 210(1), p 174–179.

    Article  CAS  Google Scholar 

  22. Z. Zhang and X. Fang, Study on Paraffin/Expanded Graphite Composite Phase Change Thermal Energy Storage Material, Energy Convers. Manag., 2006, 47(3), p 303–310.

    Article  CAS  Google Scholar 

  23. M. Amin et al., Thermal Properties of Beeswax/Graphene Phase Change Material as Energy Storage for Building Applications, Appl. Therm. Eng., 2017, 112, p 273–280.

    Article  CAS  Google Scholar 

  24. M. Shaker et al., A Criterion Combined of Bulk and Surface Lithium Storage to Predict the Capacity of Porous Carbon Lithium-Ion Battery Anodes: Lithium-Ion Battery Anode Capacity Prediction, Carbon Lett., 2021, 31(5), p 985–990.

    Article  Google Scholar 

  25. X. Leng et al., Technology and applications of graphene oxide membranes, Molecular Interactions on Two-Dimensional Materials. World Scientific, 2022, p 379–422

    Google Scholar 

  26. A.A. Sadeghi Ghazvini et al., Co-Electrophoretic Deposition of Co3O4 and Graphene Nanoplates for Supercapacitor Electrode, Mater. Lett., 2021, 285, p 129195.

    Article  CAS  Google Scholar 

  27. M. Shaker et al., The Effect of Graphene Orientation on Permeability and Corrosion Initiation under Composite Coatings, Constr. Build. Mater., 2022, 319, p 126080.

    Article  CAS  Google Scholar 

  28. M. Shaker, R. Riahifar, and Y. Li, A Review on the Superb Contribution of Carbon and Graphene Quantum Dots to Electrochemical Capacitors’ Performance: Synthesis and Application, Flat Chem, 2020, 22, p 100171.

    Article  CAS  Google Scholar 

  29. F. Tang et al., Synthesis and Thermal Properties of Fatty Acid Eutectics and Diatomite Composites as Shape-Stabilized Phase Change Materials with Enhanced Thermal Conductivity, Sol. Energy Mater. Sol. Cells, 2015, 141, p 218–224.

    Article  CAS  Google Scholar 

  30. Z.A. Qureshi, H.M. Ali, and S. Khushnood, Recent Advances on Thermal Conductivity Enhancement of Phase Change Materials for Energy Storage System: A Review, Int. J. Heat Mass Transf., 2018, 127, p 838–856.

    Article  CAS  Google Scholar 

  31. L. Gao et al., Experiments on Thermal Performance of Erythritol/Expanded Graphite in a Direct Contact Thermal Energy Storage Container, Appl. Therm. Eng., 2017, 113, p 858–866.

    Article  CAS  Google Scholar 

  32. J.-L. Zeng et al., Tetradecanol/Expanded Graphite Composite Form-stable Phase Change Material for Thermal Energy Storage, Sol. Energy Mater. Sol. Cells, 2014, 127, p 122–128.

    Article  CAS  Google Scholar 

  33. L. **a and P. Zhang, Thermal Property Measurement and Heat Transfer Analysis of Acetamide and Acetamide/Expanded Graphite Composite Phase Change Material for Solar Heat Storage, Sol. Energy Mater. Sol. Cells, 2011, 95(8), p 2246–2254.

    Article  CAS  Google Scholar 

  34. A. Hussain et al., Thermal Management of Lithium Ion Batteries using Graphene Coated Nickel Foam Saturated with Phase Change Materials, Int. J. Therm. Sci., 2018, 124, p 23–35.

    Article  CAS  Google Scholar 

  35. J. Yang et al., Hybrid Graphene Aerogels/Phase Change Material Composites: Thermal Conductivity, Shape-Stabilization and Light-to-Thermal Energy Storage, Carbon, 2016, 100, p 693–702.

    Article  CAS  Google Scholar 

  36. L. Zhang et al., Solar-Thermal Conversion and Thermal Energy Storage of Graphene Foam-Based Composites, Nanoscale, 2016, 8(30), p 14600–14607.

    Article  CAS  Google Scholar 

  37. T.H. Eun et al., Enhancement of Heat and Mass Transfer in Silica-Expanded Graphite Composite Blocks for Adsorption Heat Pumps: Part I. Characterization of the Composite Blocks, Int. J. Refrig., 2000, 23(1), p 64–73.

    Article  CAS  Google Scholar 

  38. M. Shaker et al., Improving the Electrochemical Performance of Pouch Cell Electric Double-Layer Capacitors by Integrating Graphene Nanoplates into Activated Carbon, Energ. Technol., 2022, 10(2), p 2100735.

    Article  CAS  Google Scholar 

  39. M. Shaker et al., Biomass-Derived Porous Carbons as Supercapacitor Electrodes – A Review, New Carbon Mater., 2021, 36(3), p 546–572.

    Article  CAS  Google Scholar 

  40. L. Li et al., Activated Carbon Prepared from Lignite as Supercapacitor Electrode Materials, Electroanalysis, 2016, 28(1), p 243–248.

    Article  CAS  Google Scholar 

  41. D. Qu, Studies of the Activated Carbons used in Double-layer Supercapacitors, J. Power Sources, 2002, 109(2), p 403–411.

    Article  CAS  Google Scholar 

  42. G. Sun et al., Preparation and Characterization of Graphite Nanosheets from Detonation Technique, Mater. Lett., 2008, 62(4), p 703–706.

    Article  CAS  Google Scholar 

  43. F. Tuinstra and J.L. Koenig, Raman Spectrum of Graphite, J. Chem. Phys., 1970, 53(3), p 1126–1130.

    Article  CAS  Google Scholar 

  44. R.P. Vidano et al., Observation of Raman Band Shifting with Excitation Wavelength for Carbons and Graphites, Solid State Commun., 1981, 39(2), p 341–344.

    Article  CAS  Google Scholar 

  45. R.R. Rajagopal et al., Activated Carbon Derived from Non-Metallic Printed Circuit Board Waste for Supercapacitor Application, Electrochim. Acta, 2016, 211, p 488–498.

    Article  CAS  Google Scholar 

  46. V.Z. Asl et al., Corrosion Properties and Surface Free Energy of the Zn-Al LDH/rGO Coating on MAO Pretreated AZ31 Magnesium Alloy, Surf. Coat. Technol., 2021, 426, p 127764.

    Article  Google Scholar 

  47. M. Dhelipan et al., Activated Carbon from Orange Peels as Supercapacitor Electrode and Catalyst Support for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell, J. Saudi Chem. Soc., 2017, 21(4), p 487–494.

    Article  CAS  Google Scholar 

  48. S. Claramunt et al., The Importance of Interbands on the Interpretation of the Raman Spectrum of Graphene Oxide, J. Phys. Chem. C, 2015, 119(18), p 10123–10129.

    Article  CAS  Google Scholar 

  49. H. Chen et al., Ultrafast All-Climate Aluminum-Graphene Battery with Quarter-Million Cycle Life, Sci. Adv., 2017, 3(12), p 7233.

    Article  Google Scholar 

  50. J.-N. Shi et al., Improving the Thermal Conductivity and Shape-Stabilization of Phase Change Materials using Nanographite Additives, Carbon, 2013, 51, p 365–372.

    Article  CAS  Google Scholar 

  51. Z. Yu et al., Thermal Properties of Three-dimensional Hierarchical Porous Graphene Foam-carbon Nanotube Hybrid Structure Composites with Phase Change Materials, Microporous Mesoporous Mater., 2021, 312, p 110781.

    Article  CAS  Google Scholar 

  52. S. Lowell et al., Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Springer, Cham, 2006.

    Google Scholar 

  53. J. Xu et al., Nickel Oxide/Expanded Graphite Nanocomposite Electrodes for Supercapacitor Application, J. Solid State Electrochem., 2012, 16(8), p 2667–2674.

    Article  CAS  Google Scholar 

  54. D. Kim et al., Structure and Thermal Properties of Octadecane/Expanded Graphite Composites as Shape-Stabilized Phase Change Materials, Int. J. Heat Mass Transf., 2016, 95, p 735–741.

    Article  CAS  Google Scholar 

  55. J. Zhang et al., Floating Photocatalysts based on Loading Bi/N-Doped TiO2 on Expanded Graphite C/C (EGC) Composites for the Visible Light Degradation of Diesel, RSC Adv., 2015, 5(88), p 71922–71931.

    Article  CAS  Google Scholar 

  56. T. Zou et al., Effect of Expanded Graphite Size on Performances of Modified CaCl2·6H2O Phase Change Material for Cold Energy Storage, Microporous Mesoporous Mater., 2020, 305, p 110403.

    Article  CAS  Google Scholar 

  57. G. Jiang et al., Thermal Optimization of Composite Phase Change Material/Expanded Graphite for Li-Ion battery Thermal Management, Appl. Therm. Eng., 2016, 108, p 1119–1125.

    Article  CAS  Google Scholar 

  58. C. Liu et al., A Novel PCM of Lauric–Myristic–Stearic Acid/Expanded Graphite Composite for Thermal Energy Storage, Mater. Lett., 2014, 120, p 43–46.

    Article  CAS  Google Scholar 

  59. C. Li, B. Zhang, and Q. Liu, N-Eicosane/Expanded Graphite as Composite Phase Change Materials for Electro-Driven Thermal Energy Storage, J. Energy Storage, 2020, 29, p 101339.

    Article  Google Scholar 

  60. C. Wang et al., Graphene Oxide Stabilized Polyethylene Glycol for Heat Storage, Phys. Chem. Chem. Phys., 2012, 14(38), p 13233–13238.

    Article  CAS  Google Scholar 

  61. C. Li et al., Stearic Acid/Expanded Graphite as a Composite Phase Change Thermal Energy Storage Material for Tankless Solar Water Heater, Sustain. Cities Soc., 2019, 44, p 458–464.

    Article  Google Scholar 

  62. A. Sarı and A. Karaipekli, Thermal Conductivity and Latent Heat Thermal Energy Storage Characteristics of Paraffin/Expanded Graphite Composite as Phase Change Material, Appl. Therm. Eng., 2007, 27(8–9), p 1271–1277.

    Article  Google Scholar 

  63. Y. Cai et al., Thermal Stability, Latent Heat and Flame Retardant Properties of the Thermal Energy Storage Phase Change Materials based on Paraffin/High Density Polyethylene Composites, Renew. Energy, 2009, 34(10), p 2117–2123.

    Article  CAS  Google Scholar 

  64. M. Mehrali et al., Shape-Stabilized Phase Change Materials with High Thermal Conductivity based on Paraffin/Graphene Oxide Composite, Energy Convers. Manag., 2013, 67, p 275–282.

    Article  CAS  Google Scholar 

  65. Y.A. Cengel, M.A. Boles, and M. Kanoglu, Thermodynamics: An Engineering Approach, McGraw-Hill, New York, 2011.

    Google Scholar 

  66. Y. Zhao et al., Expanded Graphite – Paraffin Composite Phase Change Materials: Effect of Particle Size on the Composite Structure and Properties, Appl. Therm. Eng., 2020, 171, p 115015.

    Article  Google Scholar 

  67. L. **a, P. Zhang, and R.Z. Wang, Preparation and Thermal Characterization of Expanded Graphite/Paraffin Composite Phase Change Material, Carbon, 2010, 48(9), p 2538–2548.

    Article  CAS  Google Scholar 

  68. A. Mills et al., Thermal Conductivity Enhancement of Phase Change Materials using a Graphite Matrix, Appl. Therm. Eng., 2006, 26(14), p 1652–1661.

    Article  CAS  Google Scholar 

  69. X. Py, R. Olives, and S. Mauran, Paraffin/Porous-Graphite-Matrix Composite as a High and Constant Power Thermal Storage Material, Int. J. Heat Mass Transf., 2001, 44(14), p 2727–2737.

    Article  CAS  Google Scholar 

  70. H. JianShe et al., Structure and Thermal Properties of Expanded Graphite/Paraffin Composite Phase Change Material, Energy Sources Part A Recover. Util. Environ. Eff., 2019, 41(1), p 86–93.

    Google Scholar 

  71. X. Leng et al., Introduction to two-dimensional materials, Molecular Interactions on Two-dimensional Materials. World Scientific, 2022, p 1–41

    Google Scholar 

  72. W. Cao et al., Large-Scale Fabrication of Graphene/Polyamide-6 Composite as a High Thermal Conductivity Engineering Composite for Thermal Radiators, Mater. Lett., 2022, 316, p 132036.

    Article  CAS  Google Scholar 

  73. W. Yang et al., Novel Segregated-Structure Phase Change Materials Composed of paraffin@graphene Microencapsules with High Latent Heat and Thermal Conductivity, J. Mater. Sci., 2018, 53(4), p 2566–2575.

    Article  CAS  Google Scholar 

  74. X. Fang et al., Increased Thermal Conductivity of Eicosane-Based Composite Phase Change Materials in the Presence of Graphene Nanoplatelets, Energy Fuels, 2013, 27(7), p 4041–4047.

    Article  CAS  Google Scholar 

  75. W. Fu et al., Thermal Properties and Thermal Conductivity Enhancement of Composite Phase Change Material using Sodium Acetate Trihydrate–Urea/Expanded Graphite for Radiant Floor Heating System, Appl. Therm. Eng., 2018, 138, p 618–626.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The research was supported by the Natural Science Foundation of Chongqing (Grant No. 2022NSCQ-MSX1165 and CSTB2022NSCQ-BHX0742) and Technology Youth Project of Chongqing Municipal Education Commission (Grant No. KJQN202203310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqi Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaker, M., Qin, Q., Zhaxi, D. et al. Improving the Cold Thermal Energy Storage Performance of Paraffin Phase Change Material by Compositing with Graphite, Expanded Graphite, and Graphene. J. of Materi Eng and Perform 32, 10275–10284 (2023). https://doi.org/10.1007/s11665-023-07839-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-07839-z

Keywords

Navigation