Log in

Effect of Uniaxial Pre-strain on Room Temperature Tensile and Creep Behavior of Aluminum Alloy AA2219-T87 for Propellant Tanks of Satellite Launch Vehicles

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this study, the effect of uniaxial pre-strain in the range of 1-9%, has been studied on room temperature tensile and creep behavior of aluminum alloy AA2219-T87. Tensile properties of pre-strained specimens showed an increase in yield strength up to 3% pre-strain, beyond which ductility in terms of percentage elongation was below the specification limit of 6%. Room temperature creep test results indicated that as the applied stress increases, the creep rate increases and time to failure decreases, in a linear manner. Fracture toughness of AA2219-T87 calculated based on an empirical relationship showed a decreasing trend with increasing pre-strain. Based on extensive experimental results, it is recommended to limit the amount of pre-strain to 3% during the fabrication of hardware to meet the material specifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. P. Manikandan, T.A. Prabhu, S.K. Manwatkar, G.S. Rao, S.V.S.N. Murty, D. Sivakumar, B. Pant and M. Mohan, Tensile and Fracture Properties of Aluminium Alloy AA2219-T87 Friction Stir Weld Joints for Aerospace Applications, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2021, 52, p 3759–3776. https://doi.org/10.1007/s11661-021-06337-y

    Article  CAS  Google Scholar 

  2. V.M.J. Sharma, G.S. Rao, S.C. Sharma and K.M. George, Low Cycle Fatigue Behavior of AA2219-T87 at Room Temperature, Mater. Perform. Charact., 2014, 3(1), p 20130092. https://doi.org/10.1520/MPC20130092

    Article  CAS  Google Scholar 

  3. J. Srinath, S.K. Manwatkar, S.V.S. Narayana Murty, P. Ramesh Narayanan, S.C. Sharma and K.M. George, Metallurgical Analysis of a Failed 17–4 PH Stainless Steel Pyro Bolt Used in Launch Vehicle Separation Systems, Mater. Perform. Charact., 2015, 4(1), p 29–44.

    CAS  Google Scholar 

  4. S.V.S. Narayana Murty, A. Sarkar, P. Ramesh Narayanan, P.V. Venkitakrishnan and J. Mukhopadhyay, Development of Processing Maps and Constitutive Relationship for Thermomechanical Processing of Aluminum Alloy AA2219, J. Mater. Eng. Perform., 2017, 26(5), p 2190–2203.

    Article  CAS  Google Scholar 

  5. S.V.S.N. Murty, A. Sarkar, P.R. Narayanan, P.V. Venkitakrishnan and J. Mukhopadhyay, Microstructure and Micro-Texture Evolution during Large Strain Deformation of Aluminium Alloy AA 2219, Mater. Sci. Eng. A, 2016, 677, p 41–49.

    Article  CAS  Google Scholar 

  6. J. Kang, Z.C. Feng, G.S. Frankel, I.W. Huang, G.Q. Wang and A.P. Wu, Friction Stir Welding of Al Alloy 2219-T8: Part I-Evolution of Precipitates and Formation of Abnormal Al2Cu Agglomerates, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2016, 47(9), p 4553–4565.

    Article  CAS  Google Scholar 

  7. G. Venkata Narayana, Fracture Behaviour of Aluminium Alloy AA 2219–T87 Welded Plates at Room and Cryo Temperatures Supervisors, Indian Institute of Technology, Bombay, 2006.

    Google Scholar 

  8. G.V. Narayana, V.M.J. Sharma, V. Diwakar, K.S. Kumar and R.C. Prasad, Fracture Behaviour of Aluminium Alloy 2219–T87 Welded Plates, Sci. Technol. Weld. Join., 2004, 9(2), p 121–130. https://doi.org/10.1179/136217104225017035

    Article  CAS  Google Scholar 

  9. A. Venugopal, P.R. Narayanan and S.C. Sharma, Evolution of Microstructure and Stress Corrosion Cracking Behavior of AA2219 Plate to Ring Weld Joints in 3.5 Wt Pct NaCl Solution, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2016, 47(4), p 1607–1620.

    Article  CAS  Google Scholar 

  10. A. Venugopal, K. Sreekumar and V.S. Raja, Stress Corrosion Cracking Behavior of Multipass TIG-Welded AA2219 Aluminum Alloy in 3.5 Wt Pct NaCl Solution, Metal. Mater .Trans. A Phys. Metall. Mater. Sci., 2012, 43(9), p 3135–3148.

    Article  CAS  Google Scholar 

  11. A. Venugopal, K. Sreekumar and V.S. Raja, Effect of Repair Welding on Electrochemical Corrosion and Stress Corrosion Cracking Behavior of TIG Welded AA2219 Aluminum Alloy in 3.5 Wt Pct NaCl Solution, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2010, 41(12), p 3151–3160.

    Article  CAS  Google Scholar 

  12. R. Ghosh, A. Venugopal, G.S. Rao, P. Ramesh Narayanan, B. Pant and R.M. Cherian, Effect of Temper Condition on the Corrosion and Fatigue Performance of AA2219 Aluminum Alloy, J. Mater. Eng. Perform., 2018, 27(2), p 423–433.

    Article  CAS  Google Scholar 

  13. G.A. Li, Z. Ma, J.T. Jiang, W.Z. Shao, W. Liu and L. Zhen, Effect of Pre-Stretch on the Precipitation Behavior and the Mechanical Properties of 2219 Al Alloy, Materials (Basel), 2021, 14(9), p 1–12.

    Article  Google Scholar 

  14. J. Zhang, Z. Jiang, F. Xu and M. Chen, Effects of Pre-Stretching on Creep Behavior, Mechanical Property and Microstructure in Creep Aging of Al-Cu-Li Alloy, Materials (Basel), 2019, 12(3), p 333. https://doi.org/10.3390/ma12030333

    Article  CAS  Google Scholar 

  15. S. Kalluri, G. Halford, and M. McGaw, Prestraining and Its Influence on Subsequent Fatigue Life, Advances in Fatigue Lifetime Predictive Techniques: 3rd Volume, (100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428–2959), ASTM International, n.d., p 328–328, doi:https://doi.org/10.1520/STP16145S.

  16. A. Cosham, A Model of Pre-Strain Effects on Fracture Toughness, J. Offshore Mech. Arct. Eng., 2001, 123(4), p 182–190. https://doi.org/10.1115/1.1408613

    Article  Google Scholar 

  17. N. Fukuda, N. Hagiwara and T. Masuda, Effect of Prestrain on Tensile and Fracture Toughness Properties of Line Pipes, J. Offshore Mech. Arct. Eng., 2005, 127(3), p 263–268. https://doi.org/10.1115/1.1894405

    Article  Google Scholar 

  18. A. Cosham, N. Hagiwara, N. Fukuda, and T. Masuda, A Model to Predict the Effect of Pre-Strain on the Fracture Toughness of Line Pipe Steel. in 4th International Pipeline Conference, Parts A and B, ASMEDC, 2002, p 1965–1978, doi:https://doi.org/10.1115/IPC2002-27324.

  19. K.M.B. Taminger, J.A. Wagner and W.B. Lisagor, Creep Strain and Strain Rate Response of 2219 Al Alloy at High Stress Levels, Mater. Sci. Forum, 2000, 331, p 1–6.

    Google Scholar 

  20. Y. Yang, L. Zhan and C. Liu, Pre-Deformation Effect on Stress-Relaxation Ageing Behavior and Mechanical Properties of AA2219 Alloy, Int. J. Light. Mater. Manuf., 2020, 3(1), p 73–76. https://doi.org/10.1016/j.ijlmm.2019.11.005

    Article  CAS  Google Scholar 

  21. J. Li, S. Kim, T.M. Lee, P.E. Krajewski, H. Wang and S.J. Hu, The Effect of Prestrain and Subsequent Annealing on the Mechanical Behavior of AA5182-O, Mater. Sci. Eng. A, 2011, 528(10–11), p 3905–3914. https://doi.org/10.1016/j.msea.2010.12.014

    Article  CAS  Google Scholar 

  22. G.K. Quainoo and S. Yannacopoulos, The Effect of Prestrain on the Natural Aging and Fracture Behaviour of AA6111 Aluminum, J. Mater. Sci., 2004, 39(15), p 4841–4847. https://doi.org/10.1023/B:JMSC.0000035323.96458.68

    Article  CAS  Google Scholar 

  23. S. Kilic, I. Kacar, M. Sahin, F. Ozturk and O. Erdem, Effects of Aging Temperature, Time, and Pre-Strain on Mechanical Properties of AA7075, Mater. Res., 2019 https://doi.org/10.1590/1980-5373-mr-2019-0006

    Article  Google Scholar 

  24. K. Alrubaie, E. Barroso and L. Godefroid, Fatigue Crack Growth Analysis of Pre-Strained 7475–T7351 Aluminum Alloy, Int. J. Fatigue, 2006, 28(8), p 934–942. https://doi.org/10.1016/j.ijfatigue.2005.09.008

    Article  CAS  Google Scholar 

  25. H. Li, L. Zhan, M. Huang, X. Zhao, C. Zhou and Z. Qiang, Effects of Pre-Strain and Stress Level on Stress Relaxation Ageing Behaviour of 2195 Al–Li Alloy: Experimental and Constitutive Modelling, J. Alloys Compd., 2021, 851, 156829. https://doi.org/10.1016/j.jallcom.2020.156829

    Article  CAS  Google Scholar 

  26. J. Peng, K. Li, J. Peng, J. Pei and C. Zhou, The Effect of Pre-Strain on Tensile Behaviour of 316L Austenitic Stainless Steel, Mater. Sci. Technol., 2018, 34(5), p 547–560. https://doi.org/10.1080/02670836.2017.1421735

    Article  CAS  Google Scholar 

  27. P.S. De, A. Kundu and P.C. Chakraborti, Effect of Prestrain on Tensile Properties and Ratcheting Behaviour of Ti-Stabilised Interstitial Free Steel, Mater. Des., 2014, 57, p 87–97. https://doi.org/10.1016/j.matdes.2013.12.029

    Article  CAS  Google Scholar 

  28. H.N. H. Wu, Shigeru Hamada, The Effect of Prestrain on Fatigue Property of Precipitation Strengthening Stainless Steel SUH660. in 19th European Conference on Fracture: Fracture Mechanics for Durability, Reliability and Safety, ECF 2012, (2012)

  29. Z. Lincai, D. **aoming, Y. Wei, Z. Man and S. Zhenya, Effect of Prestrain on Precipitation Behaviors of Ti-2.5Cu Alloy, High Temp. Mater. Process., 2018, 37(5), p 487–493. https://doi.org/10.1515/htmp-2017-0006

    Article  CAS  Google Scholar 

  30. C. **, S. Yang, Y. He, D. Guo and X. Cheng, Effect of Prestrain on Tensile Property of TiNif/Mg Composite, Mater. Sci. Technol., 2019, 35(18), p 2243–2251. https://doi.org/10.1080/02670836.2019.1668998

    Article  CAS  Google Scholar 

  31. J.G. Kaufman, “Properties of Aluminum Alloys: Tensile, Creep, and Fatigue Data at Low and High Temperatures,” (United States), ASM International, (1999)

  32. “Properties and Selection: Nonferrous Alloy and Special-Purpose Materials,” 10th editi, (Unitted sates), ASM International, (1990)

  33. B557, B557-15 Standard Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products, ASTM book of Standards, 2016, p 1–16, doi:https://doi.org/10.1520/B0557-15

  34. ASTM, “ASTM E-139 Standard Test Method for Conducting Creep, Creep-Rupture and Stress-Ruptured Test of Metallic Material,” (2009)

  35. E3, E 3-11 Preparation of Metallographic Specimens, ASTM Book of Standards, 2017, p 1–12, doi:https://doi.org/10.1520/E0003-11R17

  36. E112, E112–13 Standard Test Methods for Determining Average Grain Size, ASTM book of Standards, 2013, p 1–28, www.astm.org

  37. AMS4613, Aluminum Alloy, Sheet and Plate 6.3Cu-0.30Mn-0.06Ti-0.10V-0.18Zr Solution Heat Treated, Cold Worked (8%) and Precipitation Heat Treated (2219 -T87), Aerosp. Mater. Specif., 2017, p 1–6

  38. V.M.J. Sharma, K. Sree Kumar, B. Nageswara Rao and S.D. Pathak, Studies on the Work-Hardening Behavior of AA2219 under Different Aging Treatments, Metall. Mater. Trans. A, 2009, 40(13), p 3186–3195. https://doi.org/10.1007/s11661-009-0062-4

    Article  CAS  Google Scholar 

  39. P. Manikandan, G.S. Rao, P. Muneshwar, S.V.S.N. Murty, P.R. Narayanan, B. Pant and R.M. Cherian, Tensile and Fracture Properties of Commercially Pure Titanium (CP-70) Hemispherical Forgings, Trans. Indian Inst. Met., 2019, 72(6), p 1469.

    Article  CAS  Google Scholar 

  40. A.H. Feng, D.L. Chen, Z.Y. Ma, W.Y. Ma and R.J. Song, Microstructure and Strain Hardening of a Friction Stir Welded High-Strength Al–Zn–Mg Alloy, Acta Metall. Sin. (English Lett.), 2014, 27(4), p 723–729. https://doi.org/10.1007/s40195-014-0109-4

    Article  CAS  Google Scholar 

  41. U. Mecking and H. Knocks, Kinetics of Flow and Strain-Hardening, Acta Metall., 1981, 29(11), p 1865–1875.

    Article  CAS  Google Scholar 

  42. G.E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Company, London, 2011.

    Google Scholar 

  43. “Mechanical Testing and Evaluation,” ASM International, (2000)

  44. T.E. Howson, J.E. Stulga and J.K. Tien, Creep and Stress Rupture of Oxide Dispersion Strengthened Mechanically Alloyed Inconel Alloy MA 754, Metall. Trans. A, 1980, 11(9), p 1599–1607. https://doi.org/10.1007/BF02654524

    Article  Google Scholar 

  45. M.E. Kassner and K. Smith, Low Temperature Creep Plasticity, J. Mater. Res. Technol., 2014, 3(3), p 280–288. https://doi.org/10.1016/j.jmrt.2014.06.009

    Article  Google Scholar 

  46. N.F. Mott NF, Dislocation Theory and Transient Creep. Report on Strength of Solids. in Bristol physical society conference, (1948), p 1–19

  47. A. Seeger, The Generation of Lattice Defects by Moving Dislocations and Its Application to the Temperature Dependence of the Flow-Stress of Crystals, Lond. Edinb. Dublin Philos. Mag. J. Sci., 1955, 46(382), p 1194–1217. https://doi.org/10.1080/14786441108520632

    Article  CAS  Google Scholar 

  48. A. Seeger, J. Diehl, S. Mader and H. Rebstock, Work-Hardening and Work-Softening of Face-Centred Cubic Metal Crystals, Philos. Mag., 1957, 2(15), p 323–350. https://doi.org/10.1080/14786435708243823

    Article  CAS  Google Scholar 

  49. Y.C. Lin, W.Y. Dong, X.H. Zhu, Q. Wu and Y.J. He, Deformation Behavior and Precipitation Features in a Stretched Al-Cu Alloy at Intermediate Temperatures, Materials (Basel), 2020, 13(11), p 2495.

    Article  CAS  Google Scholar 

  50. X.H. Zhu, Y.C. Lin, Q. Wu and Y.Q. Jiang, Effects of Aging on Precipitation Behavior and Mechanical Properties of a Tensile Deformed Al–Cu Alloy, J. Alloys Compd., 2020, 843, p 1559. https://doi.org/10.1016/j.jallcom.2020.155975

    Article  CAS  Google Scholar 

  51. Y.C. Lin, Q. Wu, D.-G. He, X.-H. Zhu, D. Liu and X.-H. Li, Effects of Solution Time and Cooling Rate on Microstructures and Mechanical Properties of 2219 Al Alloy for a Larger Spun Thin-Wall Ellipsoidal Head, J. Mater. Res. Technol., 2020, 9(3), p 3566–3577. https://doi.org/10.1016/j.jmrt.2020.01.095

    Article  CAS  Google Scholar 

  52. G. An, J.-U. Park, M. Ohata and F. Minami, Pre-Strain Effect of on Fracture Performance of High-Strength Steel Welds, J. Mech. Sci. Technol., 2018, 32(7), p 3145–3151. https://doi.org/10.1007/s12206-018-0617-7

    Article  Google Scholar 

  53. E. Hemmerich, B. Rolfe, P.D. Hodgson and M. Weiss, The Effect of Pre-Strain on the Material Behaviour and the Bauschinger Effect in the Bending of Hot Rolled and Aged Steel, Mater. Sci. Eng. A, 2011, 528(9), p 3302–3309. https://doi.org/10.1016/j.msea.2010.12.035

    Article  CAS  Google Scholar 

  54. T. Miyata and T. Tagawa, Mezzo-Scopic Analysis of Fracture Toughness in Steels, Mater. Res., 2002, 5(2), p 85–93. https://doi.org/10.1590/S1516-14392002000200001

    Article  CAS  Google Scholar 

  55. V.M.J. Sharma, K.S. Kumar, B.N. Rao and S.D. Pathak, Effect of Microstructure and Strength on the Fracture Behavior of AA2219 Alloy, Mater. Sci. Eng. A, 2009, 502(1–2), p 45–53. https://doi.org/10.1016/j.msea.2008.11.024

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to GSLV project for supply of AA2219 material. Authors acknowledge the support rendered by Head, MPD for specimen fabrication. Authors are grateful to Director, VSSC for granting permission for publishing this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Manikandan or M. Mohan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manikandan, P., Rao, G.S., Murty, S.V.S.N. et al. Effect of Uniaxial Pre-strain on Room Temperature Tensile and Creep Behavior of Aluminum Alloy AA2219-T87 for Propellant Tanks of Satellite Launch Vehicles. J. of Materi Eng and Perform 32, 8713–8730 (2023). https://doi.org/10.1007/s11665-022-07740-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07740-1

Keywords

Navigation