Log in

Rejuvenation and Malleability Enhancement of Zr-Based Metallic Glass by Sub-Tg Annealing and Cryogenic Thermal Cycle Treatment

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

(Zr0.6336Cu0.1452Ni0.1012Al0.12)97.4Er2.6 bulk metallic glass (BMG) was prepared by copper mold suction casting, and the effects of sub-Tg annealing and cryogenic thermal cycle (CTC) treatment on its microstructure and properties were investigated. Although the specimens after annealing and CTC treatment did not have significant changes in the amorphous structure, the treated specimens exhibited excellent compressive plastic strain of 16.44 and 19.08%, representing an enhancement of 22.59 and 42.28% compared with the as-cast specimens. The change in plasticity was closely related to the arrangement of atoms and the content and distribution of the free volume caused by sub-Tg annealing and CTC treatment. The corrosion resistance of the specimen was further optimized after sub-Tg annealing and CTC treatment and gradually increased with the increase of annealing temperature and the CTC times. This work demonstrated that appropriate annealing temperature and CTC conditions could be used as an effective and controllable way to modulate the mechanical properties of BMGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Burgess and M. Ferry, Nanoindentation of Metallic Glasses, Mater. Today, 2009, 12(1–2), p 24–32.

    Article  CAS  Google Scholar 

  2. M.K. Miller, and P.K. Liaw, Bulk Metallic Glasses, Mat. Sci. Eng. R, 2004, 44(2–3), p 45–89.

    Google Scholar 

  3. C. Suryanarayana and A. Inoue, Bulk Metallic Glasses, Intermetallics, 2003, 11(6), p 529–540.

    Article  Google Scholar 

  4. W.F. Zhang, Y. Meng, J.F. Wang, S.K. Guan, and T. Zhang, Effect of Continuous Rapid Annealing on the Microstructure and Properties of Fe85P11C2B2 Amorphous Alloy, Mater. Lett., 2022, 315, p 131984.

    Article  CAS  Google Scholar 

  5. Y. Huang, W. Zheng, H. Fan, D. Wang, J. Shen, and J. Mi, The Effects of Annealing on the Microstructure and the Dynamic Mechanical Strength of a ZrCuNiAl Bulk Metallic Glass, Intermetallics, 2013, 42, p 192–197.

    Article  CAS  Google Scholar 

  6. G. Zha and A. Zhang, Effects of Annealing Temperature on Microstructure and Hardness of (Cu60Zr30Ti10)98Y2 Bulk Metallic Glass, J. Rare Earths, 2010, 28(2), p 243–245. (In English)

    Article  CAS  Google Scholar 

  7. A. Hitit, M. Geçgin, and P. Öztürk, Effect of Annealing on Microstructure and Microhardness of Co-Fe-Ni-Ta-B-Si Bulk Metallic Glass, J. Mater. Sci. Technol., 2015, 31(2), p 148–152.

    Article  CAS  Google Scholar 

  8. S.X. Yang, Z.P. Liu, S.M. Han, W. Zhang, and J.Z. Song, Effects of Annealing Treatment on the Microstructure and Electrochemical Properties of Low-Co Hydrogen Storage Alloys Containing Cu and Fe, Rare Met., 2011, 30(5), p 464–469.

    Article  CAS  Google Scholar 

  9. H.S. Chen, On mechanisms of Structural Relaxation in a Pd48Ni32P20 Glass, J. Non-Cryst. Solids, 1981, 46, p 289–305.

    Article  CAS  Google Scholar 

  10. J.J. Lewandowski, W.H. Wang, and A.L. Greer, Intrinsic Plasticity or Brittleness of Metallic Glasses, Philos. Mag. Lett., 2005, 85, p 77–87.

    Article  CAS  Google Scholar 

  11. J.J. Lewandowski, M. Shazly, and A.S. Nouri, Intrinsic and Extrinsic Toughening of Metallic Glasses, Scr. Mater., 2006, 54(3), p 37–41.

    Article  Google Scholar 

  12. G. Kumar, D. Rector, R.D. Conner, and J. Schroers, Embrittlement of Zr-Based Bulk Metallic Glasses, Acta Mater., 2009, 57(35), p 72–83.

    Google Scholar 

  13. Z. Chen, A. Datye, J. Ketkaew, S. Sohn, C. Zhou, O.E. Dagdeviren, J. Schroers, and U.D. Schwarza, Relaxation and Crystallization Studied by Observing the Surface Morphology Evolution of Atomically Flat Pt57.5Cu14.7Ni5.3P22.5 upon Annealing, Scr. Mater., 2020, 182, p 32–37.

    Article  CAS  Google Scholar 

  14. P.H. Tsai, S.K. Wang, S.R. Jian, I.S. Lee, Y.Z. Chang, Y.Z. Lin, J.S.C. Jang, and C. Li, Effect of Partial Crystallization on Mechanical Properties of (Cu42Zr42Al8Ag8)99.5Si0.5 Bulk Metallic Glass, Mater. Technol., 2012, 27(1), p 43–45.

    Article  CAS  Google Scholar 

  15. F.X. Qin, X.M. Wang, and A. Inoue, Effect of Annealing on Microstructure and Mechanical Property of a Ti-Zr-Cu-Pd Bulk Metallic Glass, Intermetallics, 2007, 15(10), p 1337–1342.

    Article  CAS  Google Scholar 

  16. H.J. Jun, K.S. Lee, C.P. Kim, and Y.W. Chang, Ductility Enhancement of a Ti-Based Bulk Metallic Glass through Annealing Treatment Below the Glass Transition Temperature, Intermetallics, 2012, 20, p 47–54.

    Article  CAS  Google Scholar 

  17. D. Pan, Y. Yokoyama, T. Fujita, Y.H. Liu, S. Kohara, and A. Inoue, Correlation between Structural Relaxation and Shear Transformation Zone Volume of a Bulk Metallic Glass, Appl. Phys. Lett., 2009, 95, p 141909.

    Article  Google Scholar 

  18. H. Shi, C. Tang, X. Zhao, Y. Ding, and X. Shen, Effect of Isothermal Annealing on Mechanical Performance and Corrosion Resistance of Ni-Free Zr59Ti6Cu17.5Fe10Al7.5 Bulk Metallic Glass, Non-Cryst. Solids, 2020, 537, p 120013.

    Article  CAS  Google Scholar 

  19. H. Shi, Z. Li, Z. Hu, Y. Ding, and X. Shen, Enhancing Strength and Plasticity of Zr-Based Bulk Metallic Glasses by Zr Partially Substituted Fe and Isothermal Annealing, J. Non-Cryst. Solids, 2020, 543, p 120163.

    Article  CAS  Google Scholar 

  20. W. Zhang, K. Li, Q. **ang, Y. Ren, Q. Li, and K. Qiu, The Rejuvenation and Relaxation around the Glass Transition of a Ce-Based Metallic Glass Controlled by Annealing, Quenching and Cryogenic Treatments, J. Non-Cryst. Solids, 2020, 548, p 120334.

    Article  CAS  Google Scholar 

  21. M. Zhou, K. Hagos, H. Huang, M. Yang, and L. Ma, Improved Mechanical Properties and Pitting Corrosion Resistance of Zr65Cu17.5Fe10Al7.5 Bulk Metallic Glass by Isothermal Annealing, J. Non-Cryst. Solids, 2016, 452, p 50–56.

    Article  CAS  Google Scholar 

  22. T. Wang, L. Zhang, Q. Hou, Q. Hao, and J. Qiao, Improvement the Plasticity of Fe-Based Bulk Metallic Glass via Low Temperature Annealing, J. Non-Cryst. Solids, 2021, 569, p 120965.

    Article  CAS  Google Scholar 

  23. J. Saida, R. Yamada, M. Wakeda, and S. Ogata, Thermal Rejuvenation in Metallic Glasses, Sci. Technol. Adv. Mater., 2017, 18(1), p 152–162.

    Article  CAS  Google Scholar 

  24. Q. Sun, D.M. Miskovic, H. Kong, and M. Ferry, Transition from Relaxation to Rejuvenation in Ultrastable Metallic Glass Driven by Annealing, Appl. Surf. Sci., 2021, 546(4), p 149048.

    Article  CAS  Google Scholar 

  25. S.V. Ketov, Y.H. Sun, S. Nachum, Z. Lu, A. Checchi, A.R. Beraldin, H.Y. Bai, W.H. Wang, D.V. Louzguine-Luzgin, M.A. Carpenter, and A.L. Greer, Rejuvenation of Metallic Glasses by Non-affine Thermal Strain, Nature, 2015, 524(7564), p 200–203.

    Article  CAS  Google Scholar 

  26. T. Ichitsubo, H. Kato, E. Matsubara, S. Biwa, S. Hosokawa, K. Matsuda, H. Uchiyama, and A. Baron, Static Heterogeneity in Metallic Glasses and its Correlation to Physical Properties, J. Non-Cryst. Solids, 2011, 357(2), p 494–500.

    Article  CAS  Google Scholar 

  27. W. Song, X. Meng, Y. Wu, D. Cao, H. Wang, X. Liu, X. Wang, and Z. Lu, Improving Plasticity of the Zr46Cu46Al8 Bulk Metallic Glass via Thermal Rejuvenation, Sci. Bull., 2018, 63(13), p 840–844.

    Article  CAS  Google Scholar 

  28. W. Guo, R. Yamada, and J. Saida, Rejuvenation and Plasticization of Metallic Glass by Deep Cryogenic Cycling Treatment, Intermetallics, 2018, 93, p 141–147.

    Article  CAS  Google Scholar 

  29. W. Guo, Y. Shao, J. Saida, M. Zhao, S. Lu, and S. Wu, Rejuvenation and Plasticization of Zr-Based Bulk Metallic Glass with Various Ta Content upon Deep Cryogenic Cycling, J. Alloy. Compd., 2019, 795, p 314–318.

    Article  CAS  Google Scholar 

  30. S.V. Ketov, A.S. Trifonov, Y.P. Ivanov, A.Y. Churyumov, A.V. Lubenchenko, A.A. Batrakov, J. Jiang, D.V. Louzguine-Luzgin, J. Eckert, J. Orava, and A.L. Greer, On Cryothermal Cycling as a Method for Inducing Structural Changes in Metallic Glasses, NPG Asia Mater., 2018, 10(4), p 137–145.

    Article  CAS  Google Scholar 

  31. C.Y. Li, X.L. Li, Z.X. Zhao, F.P. Zhu, and Y.C. Zhao, Effect of Peak Loads and Cooling Rates on Creep Behavior of Zr-Based Bulk Metallic Glass, J. Non-Cryst. Solids, 2019, 522, p 119596.

    Article  CAS  Google Scholar 

  32. C.Y. Li, J.F. Yin, J.Q. Ding, F.P. Zhu, F. Xu, Y.C. Zhao, and S.Z. Kou, A Thermal Processing Map of a ZrCuNiAlEr Bulk Metallic Glass in the Supercooled Liquid Region, J. Mater. Sci., 2019, 54(9), p 7246–7255.

    Article  CAS  Google Scholar 

  33. C.Y. Li, F.P. Zhu, J.Q. Ding, J.F. Yin, Z. Wang, Y.C. Zhao, and S.Z. Kou, Investigation on Creep Behavior of Zr-Based Bulk Metallic Glass by Nanoindentation, Rare Met. Mater. Eng., 2020, 49(10), p 3353–3360.

    CAS  Google Scholar 

  34. A.J. Drehman and A.L. Greer, Kinetics of Crystal Nucleation and Growth in Pd40Ni40P20 Glass, Acta Metall., 1984, 32(3), p 323–332.

    Article  CAS  Google Scholar 

  35. S. Cheng, C. Wang, M. Ma, D. Shan, and B. Guo, Mechanism for Microstructural Evolution Induced by High Temperature Deformation in Zr-Based Bulk Metallic Glasses, J. Alloy. Compd., 2016, 676, p 299–304.

    Article  CAS  Google Scholar 

  36. W. Guo, Y.M. Shao, M. Zhao, S.L. Lü, and S.S. Wu, Varying the Treating Conditions to Rejuvenate Metallic Glass by Deep Cryogenic Cycling Treatment, J. Alloy. Compd., 2020, 819, p 152997.

    Article  CAS  Google Scholar 

  37. W. Dmowski, C. Fan, M.L. Morrison, P.K. Liaw, and T. Egami, Structural Changes in Bulk Metallic Glass after Annealing Below the Glass-Transition Temperature, Mater. Sci. Eng. A Struct., 2007, 471(1–2), p 125–129.

    Article  Google Scholar 

  38. J.W. Lv, C. Wei, S. Zhang, Z.L. Shi, H.R. Zhang, X.Y. Zhang, and M.Z. Ma, Microstructure and Mechanical Behavior Evolution of Ti-Based Bulk Metallic Glass Induced by Sub-Tg Isothermal Annealing, J. Alloy. Compd., 2021, 900, p 163300.

    Article  Google Scholar 

  39. M.C. Li, H.M. Guan, S. Yang, X. Ma, and Q. Li, Minor Cr Alloyed Fe-Co-Ni-P-B High Entropy Bulk Metallic Glass with Excellent Mechanical Properties, Mater. Sci. Eng. A, 2021, 805, p 140542.

    Article  CAS  Google Scholar 

  40. X.Y. Wang, P. Gong, and L. Deng, Sub-Tg Annealing Effect on the Kinetics of Glass Transition and Crystallization for a Ti-Zr-Be-Fe Bulk Metallic Glass, J. Non-Cryst. Solids, 2017, 473, p 132–140.

    Article  CAS  Google Scholar 

  41. J.H. Luan, W.W. Zhu, G.L. Zhang, Q. Liu, W. Xun-Li, and B.L. Shen, Atomic-Scale Heterogeneity in Large-Plasticity Cu-Doped Metallic Glasses, J. Alloy. Compd., 2019, 798, p 517–522.

    Article  Google Scholar 

  42. X.L. Ji, J. **, F. Tian, J.H. Zhao, Y.T. Zhang, C.Y. Yan, and L. Fu, Effect of Cyclic Cryogenic Treatment on Tribological Performance of Fe-Based Amorphous Coatings in Air and in 3.5% NaCl Solution, J. Non-Cryst. Solids., 2022, 583, p 121471.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant No. 52261032, 51861021, 51661016, 51971103), Science and Technology Plan of Gansu Province (Grant No. 21YF5GA074, 20YF8GA052), Public Welfare Project of Zhejiang Natural Science Foundation (Grant No. LGG22E010008), and Key Research Program of Education Department of Gansu Province (Grant No. GSSYLXM-03)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunyan Li or Shengzhong Kou.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, and there is no professional or other personal interest of any nature or kind in any product, service, and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Ethical Approval

The authors declare that the experiments comply with the current laws of the country in which we performed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Li, C., Liu, Y. et al. Rejuvenation and Malleability Enhancement of Zr-Based Metallic Glass by Sub-Tg Annealing and Cryogenic Thermal Cycle Treatment. J. of Materi Eng and Perform 32, 8430–8440 (2023). https://doi.org/10.1007/s11665-022-07723-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07723-2

Keywords

Navigation