Log in

Effects of Asymmetric Cross-Rolling and Initial Annealing on the Microstructure, Crystallographic Texture, and Magnetic Behavior of Silicon Steel with Different Amounts of Antimony

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The main objective of the current research was to study the effects of asymmetric cross-rolling and initial annealing on the microstructure, crystallographic texture, and magnetic behavior of a low-silicon steel specimen with different amounts of antimony. Accordingly, three samples of 1.2%Si steel with 0.002, 0.012, and 0.026 wt.% of antimony were produced by casting and hot rolling. Some hot-rolled samples were annealed before cold rolling. Next, multistage asymmetric cross-rolling was performed up to a thickness of 1 mm at room temperature. The results showed that the average grain size of the steel samples decreased by adding antimony. The annealing before cold rolling (initial annealing) increased the grain size and shear bands. The Rotated cube component was observed in samples treated with initial annealing, which strengthened the θ-fiber. Initial annealing and antimony addition improved the texture parameter in the steel samples in such a way that the highest texture parameter was observed in the sample with the highest %Sb. The results obtained from the hysteresis loop showed the lowest coercivity and remanence in the initially annealed sample with 0.026%Sb. Therefore, it can be concluded that the combination of asymmetric cross-rolling and initial annealing with the addition of antimony improved the magnetic properties of 1.2%Si steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Q. Ren, W. Yang, L. Cheng, Z. Hu, and L. Zhang, Effect of Calcium Treatment on Magnetic Properties of Non-Oriented Electrical Steels, J. Magn. Magn. Mater., 2020, 494(June 2019), p 165803. https://doi.org/10.1016/j.jmmm.2019.165803

    Article  CAS  Google Scholar 

  2. R.F. Ivo, D.A. de Rodrigues, G.M. Bezerra, F.N.C. Freitas, H.F.G. de Abreu, and P.P. Rebouças Filho, Non-Grain Oriented Electrical Steel Photomicrograph Classification Using Transfer Learning, J. Mater. Res. Technol., 2020, 9(4), p 8580–8591. https://doi.org/10.1016/j.jmrt.2020.05.070

    Article  CAS  Google Scholar 

  3. L.M. Duarte, J.D. de Alencar Santos, F.N.C. Freitas, P.P.R. Filho and H.F.G. de Abreu, A Novel Approach Based on Pattern Recognition Techniques to Evaluate Magnetic Properties of a Non-Grain Oriented Electrical Steel in the Secondary Recrystallization Process, Meas. J. Int. Meas. Confed., 2020, 167, p 108135. https://doi.org/10.1016/j.measurement.2020.108135

    Article  Google Scholar 

  4. K. Winter, Z. Liao, R. Ramanathan, D. Axinte, G. Vakil, and C. Gerada, How Non-Conventional Machining Affects the Surface Integrity and Magnetic Properties of Non-Oriented Electrical Steel, Mater. Des., 2021, 210, p 110051. https://doi.org/10.1016/j.matdes.2021.110051

    Article  CAS  Google Scholar 

  5. C. Li, Z. Tang, G. Lin, S. Lin, and Q. Huang. Modeling the Temperature Dependence of Minor Hysteresis Loops in Ferromagnetic Materials, in IEEE International Conference on Electronic Information and Communication Technology (ICEICT), China, 2016, pp. 505–508. https://doi.org/10.1109/ICEICT.2016.7879752

  6. M. Zhou and X. Zhang, Regulating the Recrystallized Grain to Induce Strong Cube Texture in Oriented Silicon Steel, J. Mater. Sci. Technol., 2022, 96, p 126–139. https://doi.org/10.1016/j.jmst.2021.03.081

    Article  CAS  Google Scholar 

  7. L. Meng, N. Zhang, B. Zhang, C. He, Y. Han, G. Ma, X. Chen, J.X. Yang, X.L. Guo, and S. Zhong, Evolution of 0kl <1 0 0> Texture and Microstructure in Preparation of Ultra-Thin Grain-Oriented Silicon Steel, J. Magn. Magn. Mater., 2021, 523(November 2020), p 167590. https://doi.org/10.1016/j.jmmm.2020.167590

    Article  CAS  Google Scholar 

  8. S.K. Nam, G.H. Kim, D.N. Lee, and I. Kim, New Process for the Goss Texture Formation and Magnetic Property in Silicon Steel Sheet by Hot Asymmetric Rolling and Annealing, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2018, 49(5), p 1841–1850. https://doi.org/10.1007/s11661-018-4538-y

    Article  CAS  Google Scholar 

  9. S.S. Dhinwal and L.S. Toth, Effect of Strain Path Change on Texture and Microstructure Evolution in Asymmetric Rolled Extra-Low Carbon Steel, Mater. Charact., 2020, 169(June), p 110578. https://doi.org/10.1016/j.matchar.2020.110578

    Article  CAS  Google Scholar 

  10. J. Kraner, T. Smolar, D. Volsak, P. Cvahte, M. Godec, and I. Paulin, A Review of Asymmetric Rolling Osnovni Pregled Asimetričnega Valjanja, Mater. Technol., 2020, 54(5), p 731–743. https://doi.org/10.17222/mit.2020.158

    Article  CAS  Google Scholar 

  11. H.Y. Song, H.H. Lu, H.T. Liu, H.Z. Li, D.Q. Geng, R.D.K. Misra, Z.Y. Liu, and G.D. Wang, Microstructure and Texture of Strip Cast Grain-Oriented Silicon Steel After Symmetrical and Asymmetrical Hot Rolling, Steel Res. Int., 2014, 85(10), p 1477–1482. https://doi.org/10.1002/srin.201300385

    Article  CAS  Google Scholar 

  12. M. Rout, S.K. Pal, and S.B. Singh, Modern Manufacturing Engineering, Chapter 2 Cross Rolling: A Metal Forming Process, Springer, 2019, pp. 41–64. https://doi.org/10.1007/978-3-319-20152-8_2.

  13. A. Sonboli, M.R. Toroghinejad, H. Edris, and J.A. Szpunar, The Effect of Cold Rolling Process on the Microstructure and Texture Evolution in a 1 wt.%Si Non-oriented Electrical Steel, Int. J. Iron Steel Soc. Iran, 2015, 12(2), p 1–6.

    Google Scholar 

  14. J. Mishra, S. Sahni, R. Sabat, V.D. Hiwarkar, and S.K. Sahoo, Effect of Cross-Rolling on Microstructure, Texture and Magnetic Properties of Non-Oriented Electrical Steels, Mater. Res., 2017, 20(1), p 218–224. https://doi.org/10.1590/1980-5373-MR-2016-0437

    Article  CAS  Google Scholar 

  15. H. Xu, Y. Xu, Y. He, S. Cheng, H. Jiao, S. Yue, and J. Li, Two-Stage Warm Cross Rolling and its Effect on the Microstructure, Texture and Magnetic Properties of an Fe-6.5 wt.% Si Non-Oriented Electrical Steel, J. Mater. Sci., 2020, 55(26), p 12525–12543. https://doi.org/10.1007/s10853-020-04861-7

    Article  CAS  Google Scholar 

  16. S. Narayanswamy, R. Saha, and P.P. Bhattacharjee, Cross-Rolling Mediated Microstructure and Texture Evolution in Severely Cold-Rolled and Annealed Ultrafine Pearlite, Mater. Charact., 2021, 171, p 110751. https://doi.org/10.1016/j.matchar.2020.110751

    Article  CAS  Google Scholar 

  17. J.S.M. Pedrosa, S. Da Costa Paolinelli, and A.B. Cota, Influence of Initial Annealing on Structure Evolution and Magnetic Properties of 3.4%Si Non-Oriented Steel During Final Annealing, J. Magn. Magn. Mater., 2015, 393, p 146–150. https://doi.org/10.1016/j.jmmm.2015.05.058

    Article  CAS  Google Scholar 

  18. J. Qin, J. Yang, Y. Zhang, Q. Zhou, and Y. Cao, Strong {1 0 0} <0 1 2>- {4 1 1} <1 4 8> Recrystallization Textures in Heavily Hot-Rolled Non-Oriented Electrical Steels, Mater. Lett., 2020, 259, 126844. https://doi.org/10.1016/j.matlet.2019.126844

    Article  CAS  Google Scholar 

  19. A. Sonboli, M.R. Toroghinejad, H. Edris, and J.A. Szpunar, Effect of Deformation Route and Intermediate Annealing on Magnetic Anisotropy and Magnetic Properties of a 1 wt.% Si Non-Oriented Electrical Steel, J. Magn. Magn. Mater., 2015, 385, p 331–338. https://doi.org/10.1016/j.jmmm.2015.03.026

    Article  CAS  Google Scholar 

  20. L.Z. An, Y. ** Wang, H.Y. Song, G.D. Wang, and H.T. Liu, Improving Magnetic Properties of Non-Oriented Electrical Steels by Controlling Grain Size Prior to Cold Rolling, J. Magn. Magn. Mater., 2019, 491(May), p 165636. https://doi.org/10.1016/j.jmmm.2019.165636

    Article  CAS  Google Scholar 

  21. S. Takajo, C.C. Merriman, S.C. Vogel, and D.P. Field, In-situ EBSD Study on the Cube Texture Evolution in 3 wt.% Si Steel Complemented by Ex-Situ EBSD Experiment—From Nucleation to Grain Growth, Acta Mater., 2019, 166, p 100–112. https://doi.org/10.1016/j.actamat.2018.11.054

    Article  CAS  Google Scholar 

  22. J.T. Park and J.A. Szpunar, Effect of Initial Grain Size on Texture Evolution and Magnetic Properties in Nonoriented Electrical Steels, J. Magn. Magn. Mater., 2009, 321(13), p 1928–1932. https://doi.org/10.1016/j.jmmm.2008.12.015

    Article  CAS  Google Scholar 

  23. M. Takashima, T. Obara, and T. Kan, Texture Improvement in High-Permeability Nonoriented Electrical Steel by Antimony Addition, J. Mater. Eng. Perform., 1993, 2(2), p 249–254. https://doi.org/10.1007/BF02660293

    Article  CAS  Google Scholar 

  24. G. Sahoo, C.D. Singh, M. Deepa, S.K. Dhua, and A. Saxena, Recrystallization behaviour and Texture of Non-Oriented Electrical Steels, Mater. Sci. Eng. A, 2018, 734, p 229–243. https://doi.org/10.1016/j.msea.2018.07.072

    Article  CAS  Google Scholar 

  25. S.K. Chang, and W.Y. Huang, Texture Effect on Magnetic Properties by Alloying Specific Elements in Non-Grain Oriented Silicon Steels, ISIJ Int., 2005, 45(6), p 918–922. https://doi.org/10.2355/isi**ternational.45.918

    Article  CAS  Google Scholar 

  26. N. Li, L. **ang, and P. Zhao, Effect of Antimony on the Structure, Texture and Magnetic Properties of High Efficiency Non-Oriented Electrical Steel, Adv. Mater. Res., 2013, 602-604, p 435–440. https://doi.org/10.4028/www.scientific.net/AMR.602-604.435

    Article  CAS  Google Scholar 

  27. D. Dorner, S. Zaefferer, L. Lahn, and D. Raabe, Overview of Microstructure and Microtexture Development in Grain-oriented Silicon Steel, J. Magn. Magn. Mater., 2006, 304(2), p 183–186. https://doi.org/10.1016/j.jmmm.2006.02.116

    Article  CAS  Google Scholar 

  28. W.B. Hutchinson, Deformation Substructures and Recrystallisation, Mater. Sci. Forum, 2007, 558-559, p 13–22. https://doi.org/10.4028/www.scientific.net/msf.558-559.13

    Article  CAS  Google Scholar 

  29. Z. Fang, Y. Guo, B. Fu, L. Wei, J. Chen, L. Pang, and Z. Wang, Effect of Shear Bands Induced by Asymmetric Rolling on Microstructure and Texture Evolution of Non-Oriented 3.3%Si Steel, Materials (Basel), 2020, 13(21), p 1–16. https://doi.org/10.3390/ma13214696

    Article  CAS  Google Scholar 

  30. Y. Liu, X. Xu, C. Wu, H. Peng, J. Wang, and X. Su, The Ternary Fe-Sb-Si System: Experimental Phase Diagram Study and Thermodynamic Calculation, Calphad Comput. Coupling Phase Diagr. Thermochem., 2018, 63(February), p 82–91. https://doi.org/10.1016/j.calphad.2018.08.008

    Article  CAS  Google Scholar 

  31. P. Lejček, P. Šandera, J. Horníková, J. Pokluda, and M. Godec, On the Segregation Behavior of Tin and Antimony at Grain Boundaries of Polycrystalline bcc Iron, Appl. Surf. Sci., 2016, 363, p 140–144. https://doi.org/10.1016/j.apsusc.2015.12.020

    Article  CAS  Google Scholar 

  32. D.N. Lee, H.S. Choi, and H.N. Han, Recrystallization Texture of Cross Rolled 3.3%Si Electrical Steel, Met. Mater. Int., 2011, 17(6), p 879–883. https://doi.org/10.1007/s12540-011-6003-y

    Article  CAS  Google Scholar 

  33. Y. Xu, H. Jiao, Y. Zhang, F. Fang, X. Lu, Y. Wang, G. Cao, C. Li, and R.D.K. Misra, Effect of Pre-Annealing Prior to Cold Rolling on the Precipitation, Microstructure and Magnetic Properties of Strip-Cast Non-Oriented Electrical Steels, J. Mater. Sci. Technol., 2017, 33(12), p 1465–1474. https://doi.org/10.1016/j.jmst.2017.08.002

    Article  CAS  Google Scholar 

  34. Y.H. Sha, C. Sun, F. Zhang, D. Patel, X. Chen, S.R. Kalidindi, and L. Zuo, Strong Cube Recrystallization Texture in Silicon Steel by Twin-Roll Casting Process, Acta Mater., 2014, 76, p 106–117. https://doi.org/10.1016/j.actamat.2014.05.020

    Article  CAS  Google Scholar 

  35. M. Mehdi, Y. He, E.J. Hilinski, L.A.I. Kestens, and A. Edrisy, The Evolution of Cube ({001}<100>) Texture in Non-Oriented Electrical Steel, Acta Mater., 2020, 185, p 540–554. https://doi.org/10.1016/j.actamat.2019.12.024

    Article  CAS  Google Scholar 

  36. H. Jiao, Y. Xu, L. Zhao, R.D.K. Misra, Y. Tang, D. Liu, Y. Hu, M. Zhao, and M. Shen, Texture Evolution in Twin-Roll Strip Cast Non-Oriented Electrical Steel with Strong Cube and Goss Texture, Acta Mater., 2020, 199, p 311–325. https://doi.org/10.1016/j.actamat.2020.08.048

    Article  CAS  Google Scholar 

  37. F. Vodopivec, M. Jenko, D. Steiner-Petrovic, B. Breskvar, and F. Marinsek, Recovery, Recrystallization and Grain Growth in 0.03 C, 1.8 Si, 0.3 Al Steels With and Without Addition of 0.05% of Antimony. Steel Res. 68(2), 80–86 (1997)

    Article  CAS  Google Scholar 

  38. B.Y. Huang, K. Yamamoto, C. Kaido, and Y. Yamashiro, Effect of Cold-Rolling on Magnetic Properties of Non-Oriented Silicon Steel Sheets (Part II), J. Magn. Magn. Mater., 2000, 209(1-3), p 197–200. https://doi.org/10.1016/S0304-8853(99)00686-1

    Article  CAS  Google Scholar 

  39. F.J.G. Landgraf, J.R.F. Da Silveira, and D. Rodrigues-Jr, Determining the Effect of Grain Size and Maximum Induction Upon Coercive Field of Electrical Steels, J. Magn. Magn. Mater., 2011, 323(18-19), p 2335–2339. https://doi.org/10.1016/j.jmmm.2011.03.034

    Article  CAS  Google Scholar 

  40. K. Karami Nezhad, S. Kahrobaee, and I. Ahadi Akhlaghi, Application of Magnetic Hysteresis Loop Method to Determine Prior Austenite Grain Size in Plain Carbon Steels, J. Magn. Magn. Mater., 2019, 477(January), p 275–282. https://doi.org/10.1016/j.jmmm.2019.01.074

    Article  CAS  Google Scholar 

  41. E.J. Gutiérrez Castañeda et al. Columnar Grain Growth During Annealing Prior to Cold Rolling of Non-Oriented Electrical Steels, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 2019, 243(February 2018), p 8–18. https://doi.org/10.1016/j.mseb.2019.03.016

    Article  CAS  Google Scholar 

  42. H.O. Rangel, A.S. Rodríguez, and O.G. Rincón, Effect of Annealing Prior to Cold Rolling on the Microstructure Evolution and Energy Losses of Low-Si, Ultra-Low-C Hot-Rolled Electrical Steel, Metals, 2020, 10(7), p 957. https://doi.org/10.3390/met10070957

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roohollah Jamaati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babapour, A., Hosseinipour, S.J., Jamaati, R. et al. Effects of Asymmetric Cross-Rolling and Initial Annealing on the Microstructure, Crystallographic Texture, and Magnetic Behavior of Silicon Steel with Different Amounts of Antimony. J. of Materi Eng and Perform 32, 8367–8379 (2023). https://doi.org/10.1007/s11665-022-07703-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07703-6

Keywords

Navigation