Log in

Surface Oxidation and Subsurface Deformation in a Laser-Peened Ti-6Al-4V

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Laser peening without coating (LPwC) was carried out at multiple passes on Ti-6Al-4V at a power density of 6 GW cm−2. Tensile residual stress (65 MPa) was observed on the LPwC sample surface, without surface melting and re-solidification. Further, an oxide layer (TiO) had formed on the surface of the LPwC samples, without alpha case formation. Both these results have not been reported in Ti-6Al-4V. Secondary ion mass spectrometry (SIMS) revealed the presence of oxide layer < 10 μm in thickness on LPwC samples. Acid pickling was used as a practical post-processing technique to eliminate the oxide layer, without causing hydrogen embrittlement. Laser peening induced a residual stress of −233 MPa at the surface and maximum residual stress of −552 MPa at a depth of 50 μm after pickling in Ti-6Al-4V samples. Further, high- and low-angle grain boundaries were found to have increased after peening, increasing further the strength of the alloy, as shown by microhardness profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R.R. Boyer, An Overview on the Use of Titanium in the Aerospace Industry, Mater. Sci. Eng. A, 1996, 213(1–2), p 103–114.

    Article  Google Scholar 

  2. M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants - A Review, Prog. Mater. Sci. Elsevier Ltd, 2009, 54(3), p 397–425. https://doi.org/10.1016/j.pmatsci.2008.06.004

    Article  CAS  Google Scholar 

  3. N. Rao, Materials for Gas Turbines – An Overview, Adv. Gas Turbine Technol., 2011.

  4. I. Inagaki, T. Takechi, Y. Shirai, and N. Ariyasu, Application and Features of Titanium for the Aerospace Industry, Nippon Steel Sumitomo Met. Tech. Rep., 2014, 106(106), p 22–27.

    Google Scholar 

  5. J. Breme, E. Eisenbarth, and V. Biehl, “Titanium and Its Alloys for Medical Applications,” Titan. Titan. Alloys, 2005.

  6. E. Maleki and O.K. Unal, Reza Kashyzadeh, Efficiency Analysis of Shot Peening Parameters on Variations of Hardness, Grain Size and Residual Stress via Taguchi Approach, Met. Mater. Int., 2019, 25(6), p 1436–1447. https://doi.org/10.1007/s12540-019-00290-7

    Article  CAS  Google Scholar 

  7. S. Bagheri and M. Guagliano, Review of Shot Peening Processes to Obtain Nanocrystalline Surfaces in Metal Alloys, Surf. Eng., 2009, 25(1), p 3–14.

    Article  CAS  Google Scholar 

  8. L. **e, Y. Wen, K. Zhan, L. Wang, C. Jiang, and V. Ji, Characterization on Surface Mechanical Properties of Ti-6Al-4V after Shot Peening, J. Alloys. Compd. Elsevier. B.V, 2016, 666, p 65–70. https://doi.org/10.1016/j.jallcom.2016.01.119

    Article  CAS  Google Scholar 

  9. H. Liu, Y. Wei, C.K.I. Tan, D.T. Ardi, D.C.C. Tan, and C.J.J. Lee, XRD and EBSD Studies of Severe Shot Peening Induced Martensite Transformation and Grain Refinements in Austenitic Stainless Steel, Mater. Charact. Elsevier, 2020, 168, p 110574. https://doi.org/10.1016/j.matchar.2020.110574

    Article  CAS  Google Scholar 

  10. J.P. Goulmy, P. Kanoute, E. Rouhaud, L. Toualbi, S. Kruch, V. Boyer, J. Badreddine, and D. Retraint, A Calibration Procedure for the Assessment of Work Hardening Part II: Application to Shot Peened IN718 Parts, Mater. Charact., 2021, 175, p 111068. https://doi.org/10.1016/j.matchar.2021.111068

    Article  CAS  Google Scholar 

  11. Y. Sano, M. Obata, T. Kubo, N. Mukai, M. Yoda, K. Masaki, and Y. Ochi, Retardation of Crack Initiation and Growth in Austenitic Stainless Steels by Laser Peening without Protective Coating, Mater. Sci. Eng. A, 2006, 417(1–2), p 334–340.

    Article  Google Scholar 

  12. A.H. Clauer, B.P. Fairand, and B.A. Wilcox, Laser Shock Hardening of Weld Zones in Aluminum Alloys, Metall. Trans. A, 1977, 8(12), p 1871–1876.

    Article  Google Scholar 

  13. B. Dhakal and S. Swaroop, Mechanical properties and deformation dependent microstructural aspects of laser shock peened 7075-T6 aluminum alloy without coating, Mater. Charact., 2022, 183, p 111620. https://doi.org/10.1016/j.matchar.2021.111620

    Article  CAS  Google Scholar 

  14. S. Slawik, S. Bernarding, F. Lasagni, C. Navarro, A. Periñán, F. Boby, S. Migot-Choux, J. Domínguez, and F. Mücklich, Microstructural Analysis of Selective Laser Melted Ti6Al4V Modified by Laser Peening and Shot Peening for Enhanced Fatigue Characteristics, Mater. Charact., 2020, 2021, p 173.

    Google Scholar 

  15. B. Jose, T. Patil, S.S. Rajan, K. Praveenkumar, G. Manivasagam, and S. Swaroop, Effect of laser Shock Peening Without Coating (LPwC) on a Surface and Sub-Surface Characteristics of Aged Ti 15 V-3Al-3Cr-3Sn Alloy, Mater. Today. Proceed., 2021, 46, p 578–582.

    Article  CAS  Google Scholar 

  16. J. Vishnu, A.R. Ansheed, P. Hameed, K. Praveenkumar, S. Pilz, L.A. Alberta, S. Swaroop, M. Calin, A. Gebert, and G. Manivasagam, Insights into the Surface and Biocompatibility Aspects of Laser Shock Peened Ti-22Nb Alloy for Orthopedic Implant Applications, Appl. Surf. Sci., 2022, 586, p 152816. https://doi.org/10.1016/j.apsusc.2022.152816

    Article  CAS  Google Scholar 

  17. P. Delgado, I.I. Cuesta, J.M. Alegre, and A. Díaz, State of the Art of Deep Rolling, Precis. Eng., 2016, 46, p 1.

    Article  Google Scholar 

  18. R.K. Nalla, I. Altenberger, U. Noster, G.Y. Liu, B. Scholtes, and R.O. Ritchie, On the Influence of Mechanical Surface Treatments-Deep Rolling and Laser Shock Peening-on the Fatigue Behavior of Ti-6Al-4V at Ambient and Elevated Temperatures, Mater. Sci. Eng. A, 2003, 355(1–2), p 216–230.

    Article  Google Scholar 

  19. I. Altenberger, R.K. Nalla, Y. Sano, L. Wagner, and R.O. Ritchie, On the Effect of Deep-Rolling and Laser-Peening on the Stress-Controlled Low- and High-Cycle Fatigue Behavior of Ti-6Al-4V at Elevated Temperatures up to 550 °c, Int. J. Fatigue, 2012, 44, p 292–302.

    Article  CAS  Google Scholar 

  20. H. Park, J. Kim, Y. Pyun, A. Auezhan, and Y.S. Choi, Numerical and Experimental Studies on Subscale Behaviors of Ultrasonic Surface Peening, Met. Mater. Int., 2019, 25(3), p 606–616. https://doi.org/10.1007/s12540-018-00234-7

    Article  CAS  Google Scholar 

  21. S. Kumar, K. Chattopadhyay, and V. Singh, Effect of Ultrasonic Shot Peening on LCF Behavior of the Ti-6Al-4V Alloy, J. Alloys. Compd., 2017, 724, p 187–197.

    Article  CAS  Google Scholar 

  22. S. Kumar, K. Chattopadhyay, G.S. Mahobia, and V. Singh, Hot Corrosion Behaviour of Ti-6Al-4V Modified by Ultrasonic Shot Peening, Mater Des., 2016, 110, p 196–206.

    Article  CAS  Google Scholar 

  23. J.A. Travieso-Rodríguez, R. Jerez-Mesa, G. Gómez-Gras, J. Llumà-Fuentes, O. Casadesús-Farràs, and M. Madueño-Guerrero, Hardening Effect and Fatigue Behavior Enhancement through Ball Burnishing on AISI 1038, J. Mater. Res. Technol., 2019, 8(6), p 5639–5646.

    Article  Google Scholar 

  24. M. Srivastava, S. Hloch, N. Gubeljak, M. Milkovic, S. Chattopadhyaya, and J. Klich, Surface Integrity and Residual Stress Analysis of Pulsed Water Jet Peened Stainless Steel Surfaces, Measurement, 2019, 143, p 81–92. https://doi.org/10.1016/j.measurement.2019.04.082

    Article  Google Scholar 

  25. A.S. Grinspan and R. Gnanamoorthy, Surface Modification by Oil Jet Peening in Al Alloys, AA6063-T6 and AA6061-T4: Part 2: Surface Morphology, Erosion, and Mass Loss, Appl. Surf. Sci., 2006, 253(2), p 997–1005.

    Article  CAS  Google Scholar 

  26. P.S. Prevey, D.J. Hornbach, and P.W. Mason, Thermal Residual Stress Relaxation and Distortion in Surface Enhanced Gas Turbine Engine Components, 17th ASM Heat Treat. Soc. Conf. 1998 p 3–12.

  27. O. Hatamleh, J. Lyons, and R. Forman, Laser Peening and Shot Peening Effects on Fatigue Life and Surface Roughness of Friction Stir Welded 7075-T7351 Aluminum, Fatigue Fract. Eng. Mater. Struct., 2007, 30(2), p 115–130.

    Article  CAS  Google Scholar 

  28. J.Z. Zhou, S. Huang, L.D. Zuo, X.K. Meng, J. Sheng, Q. Tian, Y.H. Han, and W.L. Zhu, Effects of Laser Peening on Residual Stresses and Fatigue Crack Growth Properties of Ti-6Al-4V Titanium Alloy, Opt. Lasers Eng., 2014, 52(1), p 189–194.

    Article  Google Scholar 

  29. J.J. Ruschau, R. John, S.R. Thompson, and T. Nicholas, Fatigue Crack Nucleation and Growth Rate Behavior of Laser Shock Peened Titanium, Int. J. Fatigue, 1999 https://doi.org/10.1016/s0142-1123(99)00072-9

    Article  Google Scholar 

  30. K. Praveenkumar, P. Mylavarapu, A. Sarkar, E.I. Samuel, A. Nagesha, and S. Swaroop, Residual Stress Distribution and Elevated Temperature Fatigue Behaviour of Laser Peened Ti-6Al-4V with a Curved Surface, Int. J. Fatigue., 2022, 156, p 106641. https://doi.org/10.1016/j.ijfatigue.2021.106641

    Article  CAS  Google Scholar 

  31. K. Praveenkumar, S. Swaroop, and G. Manivasagam, Effect of Multiple Laser Peening on Microstructural, Fatigue and Fretting-Wear Behaviour of Austenitic Stainless Steel, Surf. Coat. Technol., 2022, 443, p 128611. https://doi.org/10.1016/j.surfcoat.2022.128611

    Article  CAS  Google Scholar 

  32. S.S. Rajan, G. Manivasagam, M. Ranganathan, and S. Swaroop, Influence of Laser Peening without Coating on Microstructure and Fatigue Limit of Ti-15V-3Al-3Cr-3Sn, Opt. Laser. Technol., 2018, 111, p 481–488. https://doi.org/10.1016/j.optlastec.2018.10.027

    Article  CAS  Google Scholar 

  33. S.S. Rajan, S. Swaroop, G. Manivasagam, and M.N. Rao, Fatigue Life Enhancement of Titanium Alloy by the Development of Nano/Micron Surface Layer Using Laser Peening, J. Nanosci. Nanotechnol., 2019, 19(11), p 7064–7073.

    Article  CAS  Google Scholar 

  34. C.S. Montross, T. Wei, L. Ye, G. Clark, and Y.W. Mai, Laser Shock Processing and Its Effects on Microstructure and Properties of Metal Alloys: A Review, Int. J. Fatigue, 2002, 24(10), p 1021–1036.

    Article  CAS  Google Scholar 

  35. A.K. Gujba and M. Medraj, Laser Peening Process and Its Impact on Materials Properties in Comparison with Shot Peening and Ultrasonic Impact Peening, Materials., 2014, 7(12), p 7925–7974.

    Article  Google Scholar 

  36. B. Dhakal and S. Swaroop, Laser Shock Peening as Post Welding Treatment Technique, J. Manufact. Process., 2018, 32, p 721–733. https://doi.org/10.1016/j.jmapro.2018.04.006

    Article  Google Scholar 

  37. P.P. Shukla, P.T. Swanson, and C.J. Page, Laser Shock Peening and Mechanical Shot Peening Processes Applicable for the Surface Treatment of Technical Grade Ceramics: A Review, Proceed. Inst. Mech. Eng. Part B J. Eng. Manufact., 2014, 228(5), p 639–652.

    Article  Google Scholar 

  38. P. Peyre, C. Carboni, P. Forget, G. Beranger, C. Lemaitre, and D. Stuart, Influence of Thermal and Mechanical Surface Modifications Induced by Laser Shock Processing on the Initiation of Corrosion Pits in 316L Stainless Steel, J. Mater. Sci., 2007, 42(16), p 6866–6877.

    Article  CAS  Google Scholar 

  39. P. Ganesh, R. Sundar, H. Kumar, R. Kaul, K. Ranganathan, P. Hedaoo, P. Tiwari, L.M. Kukreja, S.M. Oak, S. Dasari and G. Raghavendra, Studies on Laser Peening of Spring Steel for Automotive Applications, Opt. Lasers. Eng., 2012, 50(5), p 678–686. https://doi.org/10.1016/j.optlaseng.2011.11.013

    Article  Google Scholar 

  40. P. Peyre, L. Berthe, X. Scherpereel, and R. Fabbro, Laser-Shock Processing of Aluminium-Coated 55C1 Steel in Water-Confinement Regime, Characterization and Application to High-Cycle Fatigue Behaviour, J. Mater. Sci., 1998, 33(6), p 1421–1429.

    Article  CAS  Google Scholar 

  41. N. Mukai, N. Aoki, M. Obata, A. Ito, Y. Sano, and C. Konagai, “Laser Processing for Underwater Maintenance in Nuclear Plants,” 3rd JSME/ASME joint international conference on nuclear engineering, 1995, p 1489–1494, https://inis.iaea.org/search/search.aspx?orig_q=RN:38008928. Accessed 11 March 2020.

  42. J. Zhu, X. Jiao, C. Zhou, and H. Gao, Applications of Underwater Laser Peening in Nuclear Power Plant Maintenance, Energy. Procedia, 2012, 16, p 153–158. https://doi.org/10.1016/j.egypro.2012.01.026

    Article  CAS  Google Scholar 

  43. K. Praveenkumar, G. Manivasagam, and S. Swaroop, Effect of Laser Peening on the Residual Stress Distribution and Wettability Characteristics of Ti-6Al-4V Alloy for Biomedical Applications, Trend. Biomater. Artif. Organs., 2022, 36(S1), p 18–25.

    Google Scholar 

  44. Z. Lu, F. Xu, C. Tang, Y. Cui, H. Xu, and J. Mao, Stress Corrosion Cracking Susceptibility of 304 Stainless Steel Subjected to Laser Shock Peening without Coating, J. Mater. Eng. Perform., 2021 https://doi.org/10.1007/s11665-021-05898-8

    Article  Google Scholar 

  45. A.H. Clauer, Laser Shock Peening, the Path to Production, Metals., 2019, 9(6), p 626.

    Article  CAS  Google Scholar 

  46. D. Karthik and S. Swaroop, Laser Peening without Coating—an Advanced Surface Treatment: A Review, Mater. Manuf. Process., 2017, 32(14), p 1565–1572.

    Article  CAS  Google Scholar 

  47. Y. Sano, Quarter Century Development of Laser Peening without Coating, Metals., 2020, 10(1), p 152.

    Article  CAS  Google Scholar 

  48. P. Peyre, C. Carboni, A. Sollier, L. Berthe, C. Richard, E. de Los Rios, and R. Fabbro, New Trends in Laser Shock Wave Physics and Applications, High-Power Laser Ablation IV, 2002, 4760, p 654–666.

  49. K. Praveenkumar, S. Swaroop, and G. Manivasagam, Residual Stress Distribution, Phase Transformation, and Wettability Characteristics of Laser Peened Austenitic Stainless Steel, J. Mater. Eng. Perform., 2022 https://doi.org/10.1007/s11665-022-06748-x

    Article  Google Scholar 

  50. M.V. Nataraj and S. Swaroop, Deformation-Induced Phase Transition and Nanotwins in SS 304 Steel during Cryogenic Laser Shock Peening without Coating, J. Mater. Res. Technol., 2022, 19, p 2611–2622. https://doi.org/10.1016/j.jmrt.2022.06.005

    Article  CAS  Google Scholar 

  51. A. Umapathi and S. Swaroop, Phase Gradient in a Laser Peened TC6 Titanium Alloy Analyzed Using Synchrotron Radiation, Mater. Charact., 2017, 131, p 431–439.

    Article  CAS  Google Scholar 

  52. A. Umapathi and S. Swaroop, Residual Stress Distribution in a Laser Peened Ti-25 Cu Alloy, Surf. Coat. Technol., 2016, 307, p 38–46. https://doi.org/10.1016/j.surfcoat.2016.08.053

    Article  CAS  Google Scholar 

  53. Y. Sano, K. Akita, K. Masaki, Y. Ochi, I. Altenberger, and B. Scholtes, Laser Peening without Coating as a Surface Enhancement Technology, J. Laser. Micro. Nanoeng. Jpn. Laser. Process. Soc., 2006, 1(3), p 161–166.

    Article  CAS  Google Scholar 

  54. D. Karthik, K.U. Yazar, A. Bisht, S. Swaroop, C. Srivastava, and S. Suwas, Gradient Plastic Strain Accommodation and Nanotwinning in Multi-Pass Laser Shock Peened 321 Steel, Appl. Surf. Sci., 2019, 487, p 426–432. https://doi.org/10.1016/j.apsusc.2019.05.130

    Article  CAS  Google Scholar 

  55. I. Gurappa, Protection of Titanium Alloy Components against High Temperature Corrosion, Mater. Sci. Eng. A, 2003, 356(1–2), p 372–380.

    Article  Google Scholar 

  56. M.J. Donachie, “Titanium - A Techincal Guide,” ASM International, II, ASM Internationa, 2000, http://www.intechopen.com/books/corrosion-resistance.

  57. T. Dobrev, D.T. Pham, and S.S. Dimov, Laser Polishing, 4M 2006 - Second International Conference on Multi-Material Micro Manufacture, Elsevier, 2006, p 273–276.

  58. C. Langlade, A.B. Vannes, J.M. Krafft, and J.R. Martin, Surface Modification and Tribological Behaviour of Titanium and Titanium Alloys after YAG-Laser Treatments, Surf. Coat. Technolgy., 1998, 100, p 383–387.

    Article  Google Scholar 

  59. S. Kanou, O. Takakuwa, S.R. Mannava, D. Qian, V.K. Vasudevan, and H. Soyama, Effect of the Impact Energy of Various Peening Techniques on the Induced Plastic Deformation Region, J. Mater. Process. Technol., 2012, 212(10), p 1998–2006. https://doi.org/10.1016/j.jmatprotec.2012.05.003

    Article  Google Scholar 

  60. G. Ranjith Kumar, G. Rajyalakshmi, and S. Swaroop, A Critical Appraisal of Laser Peening and Its Impact on Hydrogen Embrittlement of Titanium Alloys, Proceed. Inst. Mech. Eng. Part. B. J. Eng. Manufact., 2019, 233(13), p 2371–2398.

    Article  CAS  Google Scholar 

  61. M.A. Meyers, Y.B. Xu, Q. Xue, M.T. Pérez-Prado, and T.R. McNelley, Microstructural Evolution in Adiabatic Shear Localization in Stainless Steel, Acta. Mater., 2003, 51(5), p 1307–1325.

    Article  CAS  Google Scholar 

  62. A.S. Gill, A. Telang and V.K. Vasudevan, Characteristics of Surface Layers Formed on Inconel 718 by Laser Shock Peening with and without a Protective Coating, J. Mater. Process. Technol., 2015, 225, p 463–472.

    Article  CAS  Google Scholar 

  63. D. Karthik and S. Swaroop, Laser Shock Peening Enhanced Corrosion Properties in a Nickel Based Inconel 600 Superalloy, J. Alloys. Compd., 2017, 694, p 1309–1319.

    Article  CAS  Google Scholar 

  64. S. Sathyajith, S. Kalainathan, and S. Swaroop, Laser peening without coating on aluminum alloy Al-6061-T6 using low energy Nd: YAG laser, Opt. Laser. Technol., 2013, 45, p 389–394. https://doi.org/10.1016/j.optlastec.2012.06.019

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Aeronautics R&D Board, India (Grant No. ARDB/GTMAP/01/2031839/M/I) for the financial support, VIT University for the infrastructure and constant support throughout the project, National Facility of OIM and Texture and Sophisticated Analytical Instrument Facility (SAIF) at IIT-Bombay for EBSD and SIMS measurements. One of us (SS) would like to thank Dr. Allan H. Clauer (LSP Technologies, OH, USA) for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Swaroop.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Praveenkumar, K., Mylavarapu, P. & Swaroop, S. Surface Oxidation and Subsurface Deformation in a Laser-Peened Ti-6Al-4V. J. of Materi Eng and Perform 32, 7348–7362 (2023). https://doi.org/10.1007/s11665-022-07639-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07639-x

Keywords

Navigation