Log in

Biaxial Tensile Behavior of Aluminum Alloy AA2219-T852 using Tension and Internal Pressure

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Aluminum alloy AA2219-T852 tubular specimens were subjected to biaxial testing. The specimens were tested under tensile as well as internal pressure simultaneously to create biaxial loading conditions with stress ratios (λ) of 0.33, 0.5, 1, 2 and 3. Uniaxial and biaxial tensile test results showed that biaxial yield stress (YS) increased from 4 to 15% depending upon the value of λ. Increase in YS was observed at lower λ, whereas lowest increase was observed in equi-biaxial tests compared with uniaxial YS. Theoretical yield criteria of von-Mises and Tresca were compared with experimental data and it was found that the von-Mises yield criterion was closely matching with experimental data, with less than 5% error. Based on the results obtained from the present study, components subjected to biaxial stress condition can be optimally designed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Hannon and P. Tiernan, A Review of Planar Biaxial Tensile Test Systems for Sheet Metal, J. Mater. Process. Technol., 2008, 198(1–3), p 1–13.

    Article  Google Scholar 

  2. A.S. Chen and F.L. Matthews, A Review of Multiaxial/Biaxial Loading Tests for Composite Materials, Composites, 1993, 24(5), p 395–406.

    Article  CAS  Google Scholar 

  3. W.P. Beaver, Multiaxial Fatigue and Fracture—A Literature Review, Department of Defence, 1984.

    Google Scholar 

  4. S.W. McClaren, A.P. Martin, G.A. Starr, C.R. Foreman, and J.F. Grabinski, Biaxial Strength Characteristics of Selected Alloys in a Cryogenic Environment, NASA Manned Spacecraft Center, Houston, 1966.

    Google Scholar 

  5. D.S. Dawicke and W.D. Pollock, Biaxial Testing of 2219-T87 Aluminum Alloy using Cruciform Specimens (Analytical Services and Materials, Inc., Hampton, 1997). http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19970027738.pdf

  6. W.M. Johnston, W.D. Pollock, and D.S. Dawicke, Biaxial Testing of 2195 Aluminum Alloy using Cruciform Specimens Lithium Alloy using Cruciform Specimens, Analytical Services and Materials Inc., Hampton, 2002.

    Google Scholar 

  7. U.S. Lindholm, L.M. Yeakley, and D.L. Davidson, Biaxial Strength Tests on Beryllium and Titanium Alloys, Air Force Materials Laboratory, Wright Patterson AFB, 1974.

    Book  Google Scholar 

  8. A.P. Beena, M.K. Sundaresan, and B.N. Rao, Destructive Tests of 15CDV6 Steel Rocket Motor Cases and Their Application to Lightweight Design, Int. J. Press. Vessel. Pip., 1995, 62(3), p 313–320.

    Article  CAS  Google Scholar 

  9. B.C.F. Wei, Destructive Tests of Full-Size Rocket Motor Cases and Their Application to Lightweight Design, J. Spacecr. Rockets, 1965, 2(3), p 363–368.

    Article  Google Scholar 

  10. T. Christopher, K. Sankarnarayanasamy, and B.N. Rao, Fracture Behaviour of Maraging Steel Tensile Specimens and Pressurized Cylindrical Vessels, Fatigue Fract. Eng. Mater. Struct., 2004, 27(3), p 177–186.

    Article  CAS  Google Scholar 

  11. J. Marin, J.H. Faupel, V.L. Dutton, and M.W. Brossman, Biaxial Plastic Stress-Strain Relation for 24S-T Aluminum Alloy, National Advisory Committee For Aeronautics, Washington, Technical Note No: 1536, 1948.

    Google Scholar 

  12. J. Marin, B.H. Ulrich, and W.P. Hughes, Plastic Stress-Strain Relations For 75S-T6 Aluminum Alloy Subjected to Biaxial Tensile Stresses, National Advisory Committee For Aeronautics, Washington, Technical Note No: 2425, 1951.

    Google Scholar 

  13. S. Shtayura, Influence of Stiffness of the Stressed State Under Biaxial Loading of Tubular Specimens on the Strength Characteristics of 20 Steel in Hydrogen, Mater. Sci., 2015, 51(2), p 254–260.

    Article  CAS  Google Scholar 

  14. P. Tomlinson, H. Azizi-Alizamini, W.J. Poole, C.W. Sinclair, and M.A. Gharghouri, Biaxial Deformation of the Magnesium Alloy AZ80, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2013, 44(7), p 2970–2983.

    Article  CAS  Google Scholar 

  15. Y.P. Korkolis, S. Kyriakides, T. Giagmouris, and L.H. Lee, Constitutive Modeling and Rupture Predictions of Al-6061-T6 Tubes under Biaxial Loading Paths, J. Appl. Mech. Trans. ASME, 2010, 77(6), p 1–5.

    Article  Google Scholar 

  16. Y.P. Korkolis and S. Kyriakides, Path-Dependent Failure of Inflated Aluminum Tubes, Int. J. Plast., 2009, 25(11), p 2059–2080. https://doi.org/10.1016/j.ijplas.2008.12.016

    Article  CAS  Google Scholar 

  17. T. Kuwanara, Anisotropic Plastic Deformation of Extruded Aluminum Alloy Tube under Axial Forces and Internal Pressure, Int. J. Plast., 2005, 21(1), p 101–117. https://doi.org/10.1016/j.ijplas.2004.04.006

    Article  CAS  Google Scholar 

  18. X.-D. Wu, M. Wan, and X.-B. Zhou, Biaxial Tensile Testing of Cruciform Specimen under Complex Loading, J. Mater. Process. Technol., 2005, 168(1), p 181–183. https://doi.org/10.1016/j.jmatprotec.2004.11.003

    Article  Google Scholar 

  19. D.E. Green, K.W. Neale, S.R. MacEwen, A. Makinde, and R. Perrin, Experimental Investigation of the Biaxial Behaviour of an Aluminum Sheet, Int. J. Plast., 2004, 20(8–9), p 1677–1706. https://doi.org/10.1016/j.ijplas.2003.11.012

    Article  CAS  Google Scholar 

  20. A.S. Khan and X. Wang, An Experimental Study on Subsequent Yield Surface after Finite Shear Prestraining, Int. J. Plast., 1993, 9(8), p 889–905. https://doi.org/10.1016/0749-6419(93)90056-V

    Article  CAS  Google Scholar 

  21. G.R. Toombes, S.R. Swanson, and D.S. Cairns, Biaxial Testing of Composite Tubes, Exp. Mech., 1985, 25(2), p 186–192. https://doi.org/10.1007/BF02328810

    Article  Google Scholar 

  22. K.S. Chan, U.S. Lindholm, and J. Wise, Biaxial Strength of HY 80 Steel, J. Eng. Mater. Technol., 1985, 107(2), p 132–137. https://doi.org/10.1115/1.3225788

    Article  Google Scholar 

  23. M.G. Stout, S.S. Hecker, and R. Bourcier, An Evaluation of Anisotropic Effective Stress-Strain Criteria for the Biaxial Yield and Flow of 2024 Aluminum Tubes, J. Eng. Mater. Technol., 1983, 105(4), p 242–249. https://doi.org/10.1115/1.3225653

    Article  Google Scholar 

  24. D. Lefebvre, C. Chebl, L. Thibodeau, and E. Khazzari, A High-Strain Biaxial-Testing Rig for Thin-Walled Tubes under Axial Load and Pressure, Exp. Mech., 1983, 23(4), p 384–392.

    Article  Google Scholar 

  25. J.H. RaIney, R.A. Swanson, and S.-C. Chou, Biaxial Testing Techniques of Thin-Walled Tubular Specimens, Army Materials and Mechanics Research Center, Watertown, 1978.

    Google Scholar 

  26. M.A. Iadicola, T. Foecke, and S.W. Banovic, Experimental Observations of Evolving Yield Loci in Biaxially Strained AA5754-O, Int. J. Plast., 2008, 24(11), p 2084–2101. https://doi.org/10.1016/j.ijplas.2008.03.003

    Article  CAS  Google Scholar 

  27. A. Wolfenden, G. Ferron, and A. Makinde, Design and Development of a Biaxial Strength Testing Device, J. Test. Eval., 1988, 16(3), p 253–256. https://doi.org/10.1520/JTE10375J

    Article  Google Scholar 

  28. A.K. Ghosh, A Criterion for Ductile Fracture in Sheets under Biaxial Loading, Metall. Trans. A, 1976, 7(4), p 523–533. https://doi.org/10.1007/BF02643968

    Article  Google Scholar 

  29. ISO 16842:2014(E), Metallic Materials-Sheet and Strip-Biaxial Tensile Testing Method using a Cruciform Test Piece (2014)

  30. Standard Test Methods for Tension Testing of Metallic Materials, ASTM E8, ASTM Book of Standards, 2021, p 1–30. https://doi.org/10.1520/E0008_E0008M-21

    Book  Google Scholar 

  31. Standard Test Method for Tensile Strain-Hardening Exponents (n-Values) of Metallic Sheet Materials, ASTM E 646, ASTM Book of Standards, 2016, p 1–8. https://doi.org/10.1520/E0646-16

    Book  Google Scholar 

  32. D.K. Balch, S.H. Goods, and C.S. Marchi, Fabrication and Testing of Electron Beam Welded Alloy AA2219 Aluminum Pressure Vessels for High-Pressure Hydrogen Service, American Society of Mechanical Engineers, Pressure Vessels and Pi** Division (Publication) PVP, 2014.

    Book  Google Scholar 

  33. S.K. Rao, N.P. Raju, G.M. Reddy, M. Kamaraj, and P.K. Rao, Microstructure and High Temperature Strength of Age Hardenable AA2219 Aluminium Alloy Modified by Sc, Mg and Zr Additions, Mater. Sci. Technol., 2009, 25(1), p 92–101.

    Article  CAS  Google Scholar 

  34. W. Xu, J. Liu, G. Luan, and C. Dong, Temperature Evolution, Microstructure and Mechanical Properties of Friction Stir Welded Thick 2219-O Aluminum Alloy Joints, Mater. Des., 2009, 30(6), p 1886–1893. https://doi.org/10.1016/j.matdes.2008.09.021

    Article  CAS  Google Scholar 

  35. P. Naga Raju, K. Srinivasa Rao, G.M. Reddy, M. Kamaraj, and K. Prasad Rao, Microstructure and High Temperature Stability of Age Hardenable AA2219 Aluminium Alloy Modified by Sc, Mg and Zr Additions, Mater. Sci. Eng. A, 2007, 464(1–2), p 192–201. https://doi.org/10.1016/j.msea.2007.01.144

    Article  CAS  Google Scholar 

  36. Preparation of Metallographic Specimens, ASTM E3 (ASTM Book of Standards, 2017), p. 1–12. https://doi.org/10.1520/E0003-11R17

  37. V.M.J. Sharma, K.S. Kumar, B.N. Rao, and S.D. Pathak, Effect of Microstructure and Strength on the Fracture Behavior of AA2219 Alloy, Mater. Sci. Eng. A, 2009, 502(1–2), p 45–53.

    Article  Google Scholar 

  38. G.E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Company, 2011.

    Google Scholar 

Download references

Acknowledgments

Authors wish to thank Director, VSSC for his permission to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Manikandan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manikandan, P., Rao, G.S., Murty, S.V.S.N. et al. Biaxial Tensile Behavior of Aluminum Alloy AA2219-T852 using Tension and Internal Pressure. J. of Materi Eng and Perform 32, 6930–6941 (2023). https://doi.org/10.1007/s11665-022-07587-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07587-6

Keywords

Navigation