Log in

Studies on Hot Deformation Behavior and Dynamic Recrystallization in a High Al Ferritic Low-Density Steel

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Hot deformation behavior of a high Al ferritic low-density steel (Fe-11wt.%Al-10wt.%Mn-1wt.%C) was investigated using hot compression tests up to a true strain of 0.69 at strain rates of 0.001-0.1 s−1 in a Gleeble thermomechanical simulator. When deformed at 900 °C the steel is ferritic and mostly dynamic recovery was observed. The samples hot compressed at 1000 and 1100 °C exhibited a dual phase microstructure (ferrite + austenite) and an appreciable amount of dynamic recrystallization (DRX) was observed in both the phases. There was a significant refinement in microstructure when the alloy was deformed in the intercritical region. The activation energy of dynamic recrystallization for the alloy was calculated to be 272.08 kJ mol−1. The ferrite phase exhibited continuous dynamic recrystallization (CDRX) whereas the austenite exhibited discontinuous dynamic recrystallization (DDRX). A constitutive equation for predicting the flow stress values corresponding to a particular strain during hot deformation was derived using the basic Zener-Hollomon equation. Average absolute relative error (AARE) value of 6.2% and correlation coefficient (R) value of 0.97 were obtained indicating a high accuracy of the formulated constitutive relation. The DRX fractions were calculated from Johnson–Mehl–Avrami–Kolmogorov (JMAK) equation as well as grain orientation spread (GOS ≤ 1°) criterion. Fractions obtained for different deformation conditions by the two methods were compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Chen, R. Rana, A. Haldar, and R.K. Ray, Current State of Fe-Mn-Al-C Low Density Steels, Prog. Mater. Sci., 2017, 89, p 345–391. https://doi.org/10.1016/j.pmatsci.2017.05.002

    Article  CAS  Google Scholar 

  2. O.A. Zambrano, A General Perspective of Fe-Mn-Al-C Steels, J. Mater. Sci., 2018, 53(20), p 14003–14062. https://doi.org/10.1007/s10853-018-2551-6

    Article  CAS  Google Scholar 

  3. C. Castan, F. Montheillet, and A. Perlade, Dynamic Recrystallization Mechanisms of an Fe-8% Al Low Density Steel under Hot Rolling Conditions, Scr. Mater., 2013, 68(6), p 360–364. https://doi.org/10.1016/j.scriptamat.2012.07.037

    Article  CAS  Google Scholar 

  4. X. Xu, X. Wang, J. Li, Z. Yan, D. Liu, Q. Liu, C. Shang, J. Fu, and P. Shen, Hot Workability Characteristics of Low-Density Fe-4Al-1Ni Ferritic Steel, Mater. Sci. Eng., 2020, 799, p 140257. https://doi.org/10.1016/j.msea.2020.140257

    Article  CAS  Google Scholar 

  5. R.S. Kumar, U. Prakash, and S.K. Nath, Workability Studies on High Al Ferritic Fe-Al-C Alloys, JOM, 2014, 66(9), p 1800–1808. https://doi.org/10.1007/s11837-014-1061-5

    Article  CAS  Google Scholar 

  6. P. Rawat, U. Prakash, and V.V.S. Prasad, Phase Transformation and Hot Working Studies on High-Al Fe-Al-Mn-C Ferritic Low-Density Steels, J. Mater. Eng. Perform., 2021, 30(8), p 6297–6308. https://doi.org/10.1007/s11665-021-05857-3

    Article  CAS  Google Scholar 

  7. D. Liu, H. Ding, M. Cai, and D. Han, Hot Deformation Behavior and Processing Map of a Fe-11Mn-10Al-0.9C Duplex Low-Density Steel Susceptible to κ-Carbides, J. Mater. Eng. Perform., 2019, 28(8), p 5116–5126. https://doi.org/10.1007/s11665-019-04200-1

    Article  CAS  Google Scholar 

  8. S.Y. Han, S.Y. Shin, S. Lee, N.J. Kim, J.H. Kwak, and K.G. Chin, Effect of Carbon Content on Cracking Phenomenon Occurring during Cold Rolling of Three Light-Weight Steel Plates, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2011, 42(1), p 138–146.

    Article  CAS  Google Scholar 

  9. D. Liu, H. Ding, M. Cai, and D. Han, Mechanical Behaviors of a Lower-Mn-Added Fe-11Mn-10Al-1.25C Lightweight Steel with Distinguished Microstructural Features, Mater. Lett., 2019, 242, p 131–134. https://doi.org/10.1016/j.matlet.2019.01.115

    Article  CAS  Google Scholar 

  10. Y.L.R. Song and E.W.F. Yang, Hot Deformation and Dynamic Recrystallization Behavior of Austenite-Based Low-Density Fe-Mn-Al-C Steel, Acta Metall. Sin. English Lett., 2016, 29(5), p 441–449. https://doi.org/10.1007/s40195-016-0406-1

    Article  CAS  Google Scholar 

  11. C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14(9), p 1136–1138. https://doi.org/10.1016/0001-6160(66)90207-0

    Article  CAS  Google Scholar 

  12. H. Khatami-Hamedani, A. Zarei-Hanzaki, H.R. Abedi, A.S. Anoushe, and L.P. Karjalainen, Dynamic Restoration of the Ferrite and Austenite Phases during Hot Compressive Deformation of a Lean Duplex Stainless Steel, Mater. Sci. Eng. A, 2020, 788, p 139400. https://doi.org/10.1016/j.msea.2020.139400

    Article  CAS  Google Scholar 

  13. S. Kumar, A. Karmakar, and S.K. Nath, Comparative Assessment on the Hot Deformation Behaviour of 9Cr-1Mo Steel with 1Cr-1Mo Steel, Met. Mater. Int., 2021, 27(10), p 3875–3890. https://doi.org/10.1007/s12540-020-00826-2

    Article  CAS  Google Scholar 

  14. H. Gwon, S. Shin, J. Jeon, T. Song, S. Kim, and B.C. De Cooman, Hot Deformation Behavior of V Micro-Alloyed TWIP Steel During Hot Compression, Met. Mater. Int., 2019, 25(3), p 594–605. https://doi.org/10.1007/s12540-018-00224-9

    Article  CAS  Google Scholar 

  15. D. Samantaray, S. Mandal, and A.K. Bhaduri, Constitutive Analysis to Predict High-Temperature Flow Stress in Modified 9Cr-1Mo (P91) Steel, Mater. Des., 2010, 31(2), p 981–984. https://doi.org/10.1016/j.matdes.2009.08.012

    Article  CAS  Google Scholar 

  16. S. Mandal, V. Rakesh, P.V. Sivaprasad, S. Venugopal, and K.V. Kasiviswanathan, Constitutive Equations to Predict High Temperature Flow Stress in a Ti-Modified Austenitic Stainless Steel, Mater. Sci. Eng. A, 2009, 500(1–2), p 114–121. https://doi.org/10.1016/j.msea.2008.09.019

    Article  CAS  Google Scholar 

  17. M. Chegini, M.R. Aboutalebi, S.H. Seyedein, G.R. Ebrahimi, and M. Jahazi, Study on Hot Deformation Behavior of AISI 414 Martensitic Stainless Steel Using 3D Processing Map, J. Manuf. Process., 2020, 56, p 916–927. https://doi.org/10.1016/j.jmapro.2020.05.008

    Article  Google Scholar 

  18. A. Oudin, P.D. Hodgson, and M.R. Barnett, EBSD Analysis of a Ti-IF Steel Subjected to Hot Torsion in the Ferritic Region, Mater. Sci. Eng. A, 2008, 486(1–2), p 72–79. https://doi.org/10.1016/j.msea.2007.09.045

    Article  CAS  Google Scholar 

  19. P. Cizek, The Microstructure Evolution and Softening Processes during High-Temperature Deformation of a 21Cr-10Ni-3Mo Duplex Stainless Steel, Acta Mater., 2016, 106, p 129–143. https://doi.org/10.1016/j.actamat.2016.01.012

    Article  CAS  Google Scholar 

  20. O.A. Zambrano, J. Valdés, Y. Aguilar, J.J. Coronado, S.A. Rodríguez, and R.E. Logé, Materials Science & Engineering A Hot Deformation of a Fe-Mn-Al-C Steel Susceptible of κ-Carbide Precipitation, Mater. Sci. Eng. A, 2017, 689, p 269–285. https://doi.org/10.1016/j.msea.2017.02.060

    Article  CAS  Google Scholar 

  21. X. Wang, D. Wang, J. **, and J. Li, Effects of Strain Rates and Twins Evolution on Dynamic Recrystallization Mechanisms of Austenite Stainless Steel, Mater. Sci. Eng. A, 2019, 761, p 138044. https://doi.org/10.1016/j.msea.2019.138044

    Article  CAS  Google Scholar 

  22. O.A. Zambrano, Stacking Fault Energy Maps of Fe-Mn-Al-C-Si Steels: Effect of Temperature, Grain Size, and Variations in Compositions, J. Eng. Mater. Technol., 2016, 138(4), p 1–9. https://doi.org/10.1115/1.4033632

    Article  CAS  Google Scholar 

  23. M.S. Ghazani, B. Eghbali, and G. Ebrahimi, Kinetics and Critical Conditions for Initiation of Dynamic Recrystallization during Hot Compression Deformation of AISI 321 Austenitic Stainless Steel, Met. Mater. Int., 2017, 23(5), p 964–973. https://doi.org/10.1007/s12540-017-6391-8

    Article  CAS  Google Scholar 

  24. C. Zhang, L. Zhang, W. Shen, C. Liu, Y. **a, and R. Li, Study on Constitutive Modeling and Processing Maps for Hot Deformation of Medium Carbon Cr-Ni-Mo Alloyed Steel, Mater. Des., 2016, 90, p 804–814. https://doi.org/10.1016/j.matdes.2015.11.036

    Article  CAS  Google Scholar 

  25. F. Chen, X. Zhao, J. Ren, H. Chen, and X. Zhang, Physically-Based Constitutive Modelling of As-Cast CL70 Steel for Hot Deformation, Met. Mater. Int., 2021, 27(6), p 1728–1738. https://doi.org/10.1007/s12540-019-00541-7

    Article  CAS  Google Scholar 

  26. E.I. Poliak and J.J. Jonas, Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation, ISIJ Int., 2003, 43(5), p 684–691. https://doi.org/10.2355/isi**ternational.43.684

    Article  CAS  Google Scholar 

  27. J.J. Jonas, X. Quelennec, L. Jiang, and É. Martin, The Avrami Kinetics of Dynamic Recrystallization, Acta Mater., 2009, 57(9), p 2748–2756. https://doi.org/10.1016/j.actamat.2009.02.033

    Article  CAS  Google Scholar 

  28. Y.H. Mozumder, K. Arun Babu, R. Saha, and S. Mandal, Flow Characteristics and Hot Workability Studies of a Ni-Containing Fe-Mn-Al-C Lightweight Duplex Steel, Mater. Charact., 2018, 146, p 1–14. https://doi.org/10.1016/j.matchar.2018.09.036

    Article  CAS  Google Scholar 

  29. H. Mirzadeh, J.M. Cabrera, A. Najafizadeh, and P.R. Calvillo, EBSD Study of a Hot Deformed Austenitic Stainless Steel, Mater. Sci. Eng. A., 2012, 538, p 236–245. https://doi.org/10.1016/j.msea.2012.01.037

    Article  CAS  Google Scholar 

  30. K.A. Babu, S. Mandal, C.N. Athreya, B. Shakthipriya, and V.S. Sarma, Hot Deformation Characteristics and Processing Map of a Phosphorous Modified Super Austenitic Stainless Steel, Mater. Des., 2017, 115, p 262–275. https://doi.org/10.1016/j.matdes.2016.11.054

    Article  CAS  Google Scholar 

  31. A. Sarkar, S. Sanyal, T.K. Bandyopadhyay, and S. Mandal, Influence of Annealing Parameters on Phase Evolution and Recrystallization Kinetics of a Mn-Al-Si Alloyed Duplex Steel, Mater. Charact., 2017, 134, p 213–224. https://doi.org/10.1016/j.matchar.2017.10.023

    Article  CAS  Google Scholar 

  32. A. Sarkar, S. Sanyal, T.K. Bandyopadhyay, and S. Mandal, Implications of Microstructure, Taylor Factor Distribution and Texture on Tensile Properties in a Ti-Added Fe-Mn-Al-Si-C Steel, Mater. Sci. Eng. A, 2019, 767, p 138402. https://doi.org/10.1016/j.msea.2019.138402

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by ER&IPR, DRDO, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ujjwal Prakash.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawat, P., Prakash, U. & Satya Prasad, V.V. Studies on Hot Deformation Behavior and Dynamic Recrystallization in a High Al Ferritic Low-Density Steel. J. of Materi Eng and Perform 32, 4541–4554 (2023). https://doi.org/10.1007/s11665-022-07428-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07428-6

Keywords

Navigation