Log in

Effect of Ca/Al Ratio on Microstructure and Mechanical Properties of Slow Extrusion High-Strength Mg-Al-Ca-Mn Alloys

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The role of different Ca/Al mass ratios (ranging from 0.2 to 1.4) in modifying the microstructure, phase evolution and the mechanical properties of Mg-Al-Ca-Mn alloys was investigated. The primary second phase evolves from blocky Mg17Al12 to semi-continuous Al2Ca and then to the reticular (Mg, Al)2Ca phase and Mg2Ca phase when the Ca/Al ratio rises. Meanwhile, the average grain sizes decrease from 1.5 to 0.5 μm. Therefore, the fine grain strengthening effect of the as-extruded alloy is enhanced. The broken second phases exhibit a banding distribution along the extrusion direction, and their dimension is approximately 3 ~ 5 μm. These second phases not only refined grains but also hinder dislocation migration, resulting in dislocation accumulation and increase in dislocation density, which strengthens the alloy further. Furthermore, increasing the Ca/Al ratio causes the recrystallization degree decrease, which means more undynamically recrystallized grains with numerous residual dislocations and higher basal texture strengthening. The optimum grain orientation changes from < 11–20 > to < 10–10 > as the Ca/Al ratio increases, and the Schmid factor of the as-extruded AXM2306 alloy is smaller than that of the AXM4106 alloy. The tensile yield strength and ultimate tensile strength of as-extruded Mg-2.0Al-2.8Ca-0.6Mn alloy were ~ 401.8 and ~ 426.2 MPa, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Y.H. Li, L. Bo, B. Zhang, F. Zhao and L.L. **g, Application of Lightweight Magnesium Alloy in Satellite Antenna Products, J. Phys. Conf. Ser., 2021, 1885(5), p 052001.

    Article  CAS  Google Scholar 

  2. M. Kiani, I. Gandikota, M. Rais-Rohani and K. Motoyama, Design of Lightweight Magnesium Car Body Structure under Crash and Vibration Constraints, J. Magnesium Alloys, 2014, 2(2), p 99–108.

    Article  CAS  Google Scholar 

  3. T. Nakata, C. Xu, R. Ajima, K. Shimizu, S. Hanaki, T.T. Sasaki, L. Ma, K. Hono and S. Kamado, Strong and Ductile Age-hardening Mg-Al-Ca-Mn Alloy that can be Extruded as Fast as Aluminum Alloys, Acta Mater., 2017, 130, p 261–270.

    Article  CAS  Google Scholar 

  4. X.Q. Liu, X.G. Qiao, R.S. Pei, Y.Q. Chi, L. Yuan and M.Y. Zheng, Role of Extrusion Rate on the Microstructure and Tensile Properties Evolution of Ultrahigh-strength Low-alloy Mg-1.0Al-1.0Ca-0.4Mn (wt.%) Alloy, J. Magnesium Alloys, 2021 https://doi.org/10.1016/j.jma.2021.05.010

    Article  Google Scholar 

  5. R. Cheng, M. Li, S. Du, H. Pan, Y. Liu, M. Gao, X. Zhang, Q. Huang, C. Yang, L. Ma and G. Qin, Effects of Single-pass Large-strain Rolling on Microstructure and Mechanical Properties of Mg-Al-Ca Alloy Sheet, Mater. Sci. Eng., A, 2020, 786, p 139332.

    Article  CAS  Google Scholar 

  6. Q. Wu, S. Zhu, L. Wang, Q. Liu, G. Yue, J. Wang and S. Guan, The Microstructure and Properties of Cyclic Extrusion Compression Treated Mg–Zn–Y–Nd Alloy for Vascular Stent Application, J. Mech. Behav. Biomed. Mater., 2012, 8, p 1–7.

    Article  CAS  Google Scholar 

  7. H. Huang, H. Liu, C. Wang, J. Sun, J. Bai, F. Xue, J. Jiang and A. Ma, Potential of Multi-pass ECAP on Improving the Mechanical Properties of a High-calcium-Content Mg-Al-Ca-Mn Alloy, J. Magnesium Alloys, 2019, 7(4), p 617–627.

    Article  CAS  Google Scholar 

  8. S. Lyu, W. **ao, G. Li, R. Zheng and C. Ma, Achieving Enhanced Mechanical Properties in Mg-Y-Sm-Zr Alloy by Altering Precipitation Behaviors through Zn Addition, Mater. Sci. Eng., A, 2019, 746, p 179–186.

    Article  CAS  Google Scholar 

  9. S. Lyu, W. **ao, R. Zheng, F. Wang, T. Hu and C. Ma, Fabrication of High-strength Mg-Y-Sm-Zn-Zr Alloy by Conventional Hot Extrusion and Aging, Mater. Sci. Eng., A, 2018, 732, p 178–185.

    Article  CAS  Google Scholar 

  10. C. Hu, C. Chen and M. Zhang, Effects of Ag Content and Heat Treatment on the Microstructure and Properties of SLMed AZ61 MgAlZn Alloy, Appl. Phys. A: Mater. Sci. Proc., 2021, 127(3), p 1–6.

    Article  Google Scholar 

  11. S. **g, S. Kaboli, A. Kabir, I.H. Jung and S. Yue, Effect of Dynamic Precipitation and Twinning on Dynamic Recrystallization of Micro-alloyed Mg–Al–Ca Alloys, Mater. Sci. Eng. A, 2013, 587(10), p 27–35.

    Google Scholar 

  12. L. Han, H. Hu and D.O. Northwood, Effect of Ca Additions on Microstructure and Microhardness of an As-cast Mg–5.0 wt.% Al Alloy, Mater. Lett, 2008, 62(3), p 381–384.

    Article  CAS  Google Scholar 

  13. G. Han, D. Chen, G. Chen and J. Huang, Development of Non-Flammable High Strength Extruded Mg-Al-Ca-Mn Alloys with High Ca/Al Ratio, J. Mater. Sci. Technol., 2018, 34(11), p 2063–2068.

    Article  CAS  Google Scholar 

  14. D. **ao, Z. Chen, X. Wang, M. Zhang and D. Chen, Microstructure, Mechanical and Creep Properties of High Ca/Al ratio Mg-Al-Ca Alloy, Mater. Sci. Eng., A, 2016, 660, p 166–171.

    Article  CAS  Google Scholar 

  15. M. Sakamoto, S. Akiyama and K. Ogi, Suppression of Ignition and Burning of Molten Mg Alloys by Ca Bearing Stable Oxide Film, J. Mater. Sci. Lett., 1997, 16(12), p 1048–1050.

    Article  CAS  Google Scholar 

  16. C. Xu, T. Nakata, G.-H. Fan, K. Yamanaka, G.-Z. Tang, L. Geng and S. Kamado, Effect of Partially Substituting Ca with Mischmetal on the Microstructure and Mechanical Properties of Extruded MgAlCaMn-Based Alloys, Acta Metall. Sin. (English Lett.), 2019, 32(2), p 205–217.

    Article  CAS  Google Scholar 

  17. J. She, S.B. Zhou, P. Peng, A.T. Tang, Y. Wang, H.C. Pan, C.L. Yang and F.S. Pan, Improvement of Strength-ductility Balance by Mn Addition in Mg–Ca Extruded Alloy, Mater. Sci. Eng., A, 2020, 772, p 138796.

    Article  CAS  Google Scholar 

  18. F. Abdiyan, R. Mahmudi and H.M. Ghasemi, Effect of Mn Addition on the Microstructure, Mechanical Properties and Corrosion Resistance of a Biodegradable Mg–Gd–Zn Alloy, Mater. Chem. Phys., 2021, 271, p 124878.

    Article  CAS  Google Scholar 

  19. L.B. Tong, J.H. Chu, Z.H. Jiang, S. Kamado and M.Y. Zheng, Ultra-fine Grained Mg-Zn-Ca-Mn Alloy with Simultaneously Improved Strength and Ductility Processed by Equal Channel Angular Pressing, J. Alloys Compd., 2019, 785, p 410–421.

    Article  CAS  Google Scholar 

  20. W.J. Li, K.K. Deng, X. Zhang, K.B. Nie and F.J. Xu, Effect of Ultra-slow Extrusion Speed on the Microstructure and Mechanical Properties of Mg-4Zn-0.5Ca Alloy, Mater. Sci. Eng. A, 2016, 677, p 367–375.

    Article  CAS  Google Scholar 

  21. M.G. Jiang, C. Xu, T. Nakata, H. Yan, R.S. Chen and S. Kamado, Enhancing Strength and Ductility of Mg-Zn-Gd Alloy Via Slow-speed Extrusion Combined with Pre-forging, J. Alloys Compd., 2017, 694, p 1214–1223.

    Article  CAS  Google Scholar 

  22. H. Yu, S.H. Park and B.S. You, Development of Extraordinary High-strength Mg–8Al–0.5Zn Alloy Via a Low Temperature and Slow Speed Extrusion, Mater. Sci. Eng. A, 2014, 610, p 445–449.

    Article  CAS  Google Scholar 

  23. J.-W. Kang, X.-F. Sun, K.-K. Deng, F.-J. Xu, X. Zhang and Y. Bai, High Strength Mg-9Al Serial Alloy Processed by Slow Extrusion, Mater. Sci. Eng., A, 2017, 697, p 211–216.

    Article  CAS  Google Scholar 

  24. S.H. Park, B.S. You, R.K. Mishra and A.K. Sachdev, Effects of Extrusion Parameters on the Microstructure and Mechanical Properties of Mg–Zn–(Mn)–Ce/Gd Alloys, Mater. Sci. Eng., A, 2014, 598, p 396–406.

    Article  CAS  Google Scholar 

  25. Z.T. Li, X.G. Qiao, C. Xu, X.Q. Liu, S. Kamado and M.Y. Zheng, Enhanced Strength by Precipitate Modification in Wrought Mg–Al–Ca Alloy with Trace Mn Addition, J. Alloys Compd., 2020, 836, p 154689.

    Article  CAS  Google Scholar 

  26. S. Sanyal, M. Paliwal, T.K. Bandyopadhyay and S. Mandal, Evolution of Microstructure, Phases and Mechanical Properties in Lean as-cast Mg–Al–Ca–Mn Alloys under the Influence of a Wide Range of Ca/Al Ratio, Mater. Sci. Eng. A, 2021, 800, p 140322.

    Article  CAS  Google Scholar 

  27. K.B. Nie, Z.H. Zhu, K.K. Deng and J.G. Han, Influence of Extrusion Parameters on Microstructure, Texture and Mechanical Properties of a Low Mn and high-Ca Containing Mg-29Zn-11Ca-05 Mn Magnesium Alloy, J. Mater. Res. Technol., 2020, 9(3), p 5264–5277.

    Article  CAS  Google Scholar 

  28. K.B. Nie, Z.H. Zhu, P. Munroe, K.K. Deng and J.G. Han, Microstructure, Tensile Properties and Work Hardening Behavior of an Extruded Mg-Zn-Ca-Mn Magnesium Alloy, Acta Metall. Sin-Eng. Lett., 2020, 33(7), p 922–936.

    Article  CAS  Google Scholar 

  29. L. Zhang, K.-K. Deng, K.-B. Nie, F.-J. Xu, K. Su and W. Liang, Microstructures and Mechanical Properties of Mg–Al–Ca Alloys Affected by Ca/Al Ratio, Mater. Sci. Eng., A, 2015, 636, p 279–288.

    Article  CAS  Google Scholar 

  30. S.W. Xu, K. Oh-ishi, S. Kamado, F. Uchida, T. Homma and K. Hono, High-strength Extruded Mg–Al–Ca–Mn Alloy, Scr. Mater., 2011, 65(3), p 269–272.

    Article  CAS  Google Scholar 

  31. Y. Jiang, Y.A. Chen and J. Gao, Comparative Study Regarding the effect of Al, Zn, and Gd on the Microstructure and Mechanical Properties of Mg Alloy Mg-Sn-Li, Mater. Des., 2016, 105, p 34–40.

    Article  CAS  Google Scholar 

  32. Y. Ali, D. Qiu, B. Jiang, F. Pan and M.-X. Zhang, Current Research Progress in Grain Refinement of Cast Magnesium Alloys: A Review Article, J. Alloys Compd., 2015, 619, p 639–651.

    Article  CAS  Google Scholar 

  33. W.-Y. Yu, N. Wang, X.-B. **ao, B.-Y. Tang, L.-M. Peng and W.-J. Ding, First-principles Investigation of the Binary AB2 Type Laves Phase in Mg–Al–Ca Alloy: Electronic Structure and Elastic Properties, Solid State Sci., 2009, 11(8), p 1400–1407.

    Article  CAS  Google Scholar 

  34. Z.T. Li, X.D. Zhang, M.Y. Zheng, X.G. Qiao, K. Wu, C. Xu and S. Kamado, Effect of Ca/Al Ratio on Microstructure and Mechanical Properties of Mg-Al-Ca-Mn Alloys, Mater. Sci. Eng., A, 2017, 682, p 423–432. ((in English))

    Article  CAS  Google Scholar 

  35. Z.T. Li, X.G. Qiao, C. Xu, S. Kamado, M.Y. Zheng and A.A. Luo, Ultrahigh Strength Mg-Al-Ca-Mn Extrusion Alloys with Various Aluminum Contents, J. Alloys Compd., 2019, 792, p 130–141.

    Article  CAS  Google Scholar 

  36. X. Li, F. Jiao, T. Al-Samman and S. Ghosh Chowdhury, Influence of Second-phase Precipitates on the Texture Evolution of Mg–Al–Zn alloys during Hot Deformation, Scr. Mater., 2012, 66(3), p 159–162.

    Article  CAS  Google Scholar 

  37. Y. Chai, B. Jiang, J. Song, Q. Wang, J. He, J. Zhao, G. Huang, Z. Jiang and F. Pan, Role of Al Content on the Microstructure, Texture and Mechanical Properties of Mg-3.5Ca based Alloys, Mater. Sci. Eng. A, 2018, 730, p 303–316.

    Article  CAS  Google Scholar 

  38. H. Ding, X. Shi, Y. Wang, G. Cheng and S. Kamado, Texture Weakening and Ductility Variation of Mg–2Zn Alloy with CA or RE Addition, Mater. Sci. Eng., A, 2015, 645, p 196–204z.

    Article  CAS  Google Scholar 

  39. N. Stanford, The Effect of Calcium on the Texture, Microstructure and Mechanical Properties of Extruded Mg–Mn–Ca Alloys, Mater. Sci. Eng., A, 2010, 528(1), p 314–322.

    Article  Google Scholar 

  40. M.A. Steiner, J.J. Bhattacharyya and S.R. Agnew, The Origin and Enhancement of {0001} \(<{11{\bar{2}}0}>\) Texture during Heat Treatment of Rolled AZ31B Magnesium Alloys, Acta Mater., 2015, 95, p 443–455.

    Article  CAS  Google Scholar 

  41. X. Wang, A.J. Sánchez Egea, J. Xu, X. Meng, Z. Wang, D. Shan, B. Guo and J. Cao, Current-Induced Ductility Enhancement of a Magnesium Alloy AZ31 in Uniaxial Micro-Tension Below 373 K, Materials, 2019, 12(1), p 111.

    Article  CAS  Google Scholar 

  42. N. Afrin, D.L. Chen, X. Cao and M. Jahazi, Strain Hardening Behavior of a Friction Stir Welded Magnesium Alloy, Scr. Mater., 2007, 57(11), p 1004–1007.

    Article  CAS  Google Scholar 

  43. K. Hu, C. Li, G. Xu, G. Ruizhen, Q. Le and Q. Liao, Effect of Extrusion Temperature on the Microstructure and Mechanical Properties of Low Zn Containing Wrought Mg Alloy Micro-alloying with Mn and La-rich Misch Metal, Mater. Sci. Eng., A, 2019, 742, p 692–703.

    Article  CAS  Google Scholar 

  44. X.K. Kang, K.B. Nie, K.K. Deng and Y.C. Guo, Effect of Extrusion Parameters on Microstructure, Texture and Mechanical Properties of Mg-1.38Zn-0.17Y-0.12Ca (at. %) alloy, Mater. Charact., 2019, 151, p 137–145.

    Article  CAS  Google Scholar 

  45. J.H. Zhang, K.B. Nie, K.K. Deng, J.G. Han and J.Y. Yi, Ultrahigh Strength TiCnp/Mg–2Zn-0.8Sr-0.2Ca Magnesium Matrix Composite Processed by Combining Multidirectional Forging with Extrusion, Compos. Commun, 2021, 27, p 100847.

    Article  Google Scholar 

  46. Z. Jiang, B. Jiang, H. Yang, Q. Yang, J. Dai and F. Pan, Influence of the Al2Ca Phase on Microstructure and Mechanical Properties of Mg–Al–Ca Alloys, J. Alloys Compd., 2015, 647, p 357–363.

    Article  CAS  Google Scholar 

  47. M. Cihova, R. Schäublin, L.B. Hauser, S.S.A. Gerstl, C. Simson, P.J. Uggowitzer and J.F. Löffler, Rational Design of a Lean Magnesium-based Alloy with high Age-hardening Response, Acta Mater., 2018, 158, p 214–229.

    Article  CAS  Google Scholar 

  48. S. Gneiger, N.P. Papenberg, A.R. Arnoldt, C.M. Schlogl and M. Fehlbier, Investigations of High-strength Mgalcamn Alloys with a Broad Range of ca+al Contents, Materials, 2021, 14(18), p 5439.

    Article  CAS  Google Scholar 

  49. A. Chu, Y. Zhao, R. Ud-Din, H. Hu, Q. Zhi and Z. Wang, Microstructure and Properties of Mg-Al-Ca-Mn Alloy with High Ca/Al Ratio Fabricated by Hot Extrusion, Materials, 2021, 14(18), p 5230.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the “National Natural Science Foundation of China” (Grants. 51771129, 52001223 and 51771128). The authors also thank for the Support from the “National Key Research and Development Program for Young Scientists” (Grant. 2021YFB3703300) and the special fund project for guiding local science and technology development by the central government (Grant. YDZJSX2021B019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaibo Nie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Nie, K., Yang, A. et al. Effect of Ca/Al Ratio on Microstructure and Mechanical Properties of Slow Extrusion High-Strength Mg-Al-Ca-Mn Alloys. J. of Materi Eng and Perform 32, 3129–3141 (2023). https://doi.org/10.1007/s11665-022-07283-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07283-5

Keywords

Navigation