Log in

Effect of Sn Content on the Pore Structures of Porous Ni-Sn Alloys Produced by Reactive Synthesis Sintering Method

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The objective of this work is to prepare porous Ni-Sn alloys by low temperature activation reaction sintering method. The phase composition, volume expansion ratio, pore structures and pore morphology of the sintered samples were studied by x-ray diffraction (XRD), vernier caliper measurement, aperture tester, and scanning electron microscopy (SEM). The results indicate that the phase composition is related to Sn content, pore size and porosity. The volume expansion rate of porous Ni-Sn alloys decreases first and then increases with the Sn amount. For Ni-Sn alloy with 50 wt.% of Sn content, the main phases are found to be Ni3Sn and Ni3Sn2. The average pore size is measured to be 2.78μm, which leads to an open porosity of 45.01% and a total porosity of 47.51%. Meanwhile, the volume expansion rate and permeability are determined to be – 0.99% and 105.1 m3 m–2 kpa–1 h–1, respectively. The high porosity of Ni-Sn alloy is attributed to the interconnected pores in the green compacts and the Kirkendall effect due to the difference in diffusion rates of Ni and Sn atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

References

  1. H. Dong, Y. Jiang, Y. He, M. Song, J. Zou, N. Xu, B. Huang, C. Liu and P. Liaw, Formation of Porous Ni–Al Intermetallics Through Pressureless Reaction Synthesis, J. Alloy. Com., 2009, 48(4), p 907–913.

    Article  Google Scholar 

  2. K. Zhuo, M.-G. Jeong and C.-H. Chung, Highly Porous Dendritic Ni–Sn Anodes For Lithium-Ion Batteries, J Power Sour, 2013, 24(4), p 601–605. https://doi.org/10.1016/j.jpowsour.2013.01.055

    Article  CAS  Google Scholar 

  3. Y.F. **ao, Y. Liu, Z. Tang, L. Wu and Y.H. He, High Temperature Oxidation Resistance of Porous Ni–Cr–Fe Materials, Inter J Mater Res, 2020, 11(1), p 356–359. https://doi.org/10.3139/146.111885

    Article  CAS  Google Scholar 

  4. Z. Wang, Y. Jiang and Y. He, Oxidation Behavior Of Reactively Synthesized Porous Ti3(Si, Al)C2 Compound at 800 °C in Ambient Air, Ceram Inter, 2019, 45(3), p 15482–15487.

    Article  CAS  Google Scholar 

  5. C. Ding, J. Zhang, Y. Liu, J. Guo and J. Luan, Effects of Pore-Forming Agent on Characterization of NiO/YSZ Porous Anode for SOFC, Mater. Sci. Forum, 2016, 848, p 389–395. https://doi.org/10.4028/www.scientific.net/MSF.848.389

    Article  Google Scholar 

  6. X.T. Luo, Y.J. Li and C.J. Li, A Comparison of Cold Spray Deposition Behavior Between Gas Atomized and Dendritic Porous Electrolytic Ni Powders Under the Same Spray Conditions, Mater Lett, 2016, 16(3), p 58–60. https://doi.org/10.1016/j.matlet.2015.10.048

    Article  CAS  Google Scholar 

  7. Q. Zhen, Z. Zhang and H. Jia, Alloy composition dependence of formation of porous Ni prepared by rapid solidification and chemical dealloying, J Alloys Compd, 2009, 47(2), p 71–78. https://doi.org/10.1016/j.jallcom.2008.04.017

    Article  CAS  Google Scholar 

  8. V.Y. Filimonov, M.A. Korchagin and I.A. Dietenberg, High Temperature Synthesis of Single-Phase Ti3al Intermetallic Compound in Mechanically Activated Powder Mixture, Powder Technol, 2013, 23(5), p 606–613. https://doi.org/10.1016/j.powtec.2012.11.022

    Article  CAS  Google Scholar 

  9. T. Aydoğmuş and Ş Bor, Processing of Porous TiNi Alloys Using Magnesium as Space Holder, J Alloys compd, 2009, 47(8), p 705–710. https://doi.org/10.1016/j.jallcom.2008.11.141

    Article  CAS  Google Scholar 

  10. M. Gao, C. Yang, Q. Zhang, Y. Yu, Y. Hua, Y. Li and P. Dong, Electrochemical fabrication of porous Ni-Cu alloy nanosheets with high catalytic activity for hydrogen evolution, Electrochim. Acta, 2016, 21(5), p 609–616. https://doi.org/10.1016/j.electacta.2016.08.145

    Article  CAS  Google Scholar 

  11. C. Baldizzone, L. Gan, N. Hodnik, G.P. Keeley, A. Kostka, M. Heggen, P. Strasser and K.J.J. Mayrhofer, Stability of Dealloyed Porous Pt/Ni Nanoparticles, ACS Catal., 2015, 5(4), p 5000–5007. https://doi.org/10.1021/acscatal.5b01151

    Article  CAS  Google Scholar 

  12. H. Cui, L. Cao, Y. Chen and J. Wu, Unique Microstructure of Porous Nial Intermetallic Compound Prepared by Combustion Synthesis, J Porous Mater, 2012, 19(2), p 415–422.

    Article  CAS  Google Scholar 

  13. C. Yeh and W. Sun, Use of TiH2 as a reactant in combustion synthesis of porous Ti5Si3 and Ti5Si3/TiAl intermetallics, J Alloys Compd, 2016, 66(9), p 66–71.

    Article  Google Scholar 

  14. L. Yu, Y. Jiang, Y. He, X. Liu and H. Zhang, Fabrication Of Porous Nickel–Copper Alloy With Controlled Micro-Sized Pore Structure Through The Kirkendall Effect, Mater. Chem. Phys., 2015, 163, p 355–361. https://doi.org/10.1016/j.matchemphys.2015.07.050

    Article  CAS  Google Scholar 

  15. L. Wu, Y. He, T. Lei, B. Nan, N. Xu, J. Zou, B. Huang and C. Liu, Characterization of the Porous Ni3al–Mo Electrodes During Hydrogen Generation From Alkaline Water Electrolysis, Energy, 2013, 63(4), p 216–224. https://doi.org/10.1016/j.energy.2013.10.029

    Article  CAS  Google Scholar 

  16. B.M. Jovic, U.C. Lacnjevac, N.V. Krstajic and V.D. Jovic, Service Life Test of the Nisn Coatings as Cathodes for Hydrogen Evolution in Industrial Chlor-Alkali Electrolysis, Inter J Hydro Energy, 2014, 39(2), p 8947–8958. https://doi.org/10.1016/j.ijhydene.2014.04.015

    Article  CAS  Google Scholar 

  17. M.B.F. Santos, E.P.D. Silva, R.J. Andrade and J.A.F. Dias, NiSn and Porous NiZn Coatings for Water Electrolysis, Electrochim. Acta, 2010 https://doi.org/10.1002/chin.199210014

    Article  Google Scholar 

  18. C. Kong, Z. Li and G. Lu, Noble-Metal-Free Nisnxoy Decorated Graphene Cocatalyst For Highly Efficient Reduction of Water to Hydrogen, Inter J Hydro Energy, 2015, 40(3), p 9634–9641. https://doi.org/10.1016/j.ijhydene.2015.05.144

    Article  CAS  Google Scholar 

  19. H. Dong, Q. Liu, Y. He and C.T. Liud, Formation of Porous Two-Phase Ni–Al Alloys Through Reactive Synthesis, J Com Theore Nanoence, 2012, 12, p 272–275. https://doi.org/10.1166/asl.2012.2746

    Article  CAS  Google Scholar 

  20. L. Wu, Y.H. He, Y. Jiang, Y. Zeng and B. Nan, Effect of Pore Structures on Corrosion Resistance of Porous Ni3al Intermetallics, Transactions of Nonferrous Metals Society of China, 2014, 24(2), p 3509–3516. https://doi.org/10.1016/S1003-6326(14)63495-6

    Article  CAS  Google Scholar 

  21. Y. He, C.T. Liu, Y. Jiang and L. Yu, The Corrosion Behavior of Sintering Micro-Porous Ni-Cu Alloy in Hydrofluoric Acid Solution, J All Com: An Inter J Mater Sci Solid-state Chem Phys, 2015, 638, p 7–13. https://doi.org/10.1016/j.jallcom.2015.01.281

    Article  CAS  Google Scholar 

  22. L. Yu, T. Lei and B. Nan, Characteristics of a Sintered Porous Ni–Cu Alloy Cathode for Hydrogen Production in a Potassium Hydroxide Solution, Energy, 2016, 2016(97), p 498–505. https://doi.org/10.1016/j.energy.2015.12.138

    Article  CAS  Google Scholar 

  23. I. Standards, Permeable Sintered Metal Materials - Determination of Bubble Test Pore Size.

  24. H. Gao, Y. He, P. Shen, J. Zou, N. Xu, Y. Jiang, B. Huang and C.T. Liu, Porous FeAl Intermetallics Fabricated by Elemental Powder Reactive Synthesis, Intermetallics, 2009, 17, p 1041–1046. https://doi.org/10.1016/j.intermet.2009.05.007

    Article  CAS  Google Scholar 

  25. Y. Jiang, Y. He, C.T. Liu, Review Of Porous Intermetallic Compounds By Reactive Synthesis Of Elemental Powders, Intermetallics, S0966979517300262, (2017) https://doi.org/10.1016/j.intermet.2017.06.003

  26. J. Yang, C. Liao, J. Wang, Y. Jiang and Y. He, Reactive Synthesis for Porous Ti3AlC2 Ceramics Through TiH2, Al Graph Powders, Ceram Inter, 2014, 40(5), p 6739–6745. https://doi.org/10.1016/j.ceramint.2013.11.136

    Article  CAS  Google Scholar 

  27. J. Yang, C. Liao, J. Wang, Y. Jiang and Y. He, Effects of the Al Content on Pore Structures of Porous Ti3alc2 Ceramics by Reactive Synthesis, Ceram Inter, 2014, 40(8), p 4643–4648. https://doi.org/10.1016/j.ceramint.2013.09.004

    Article  CAS  Google Scholar 

  28. V. Tallapally, T.A. Nakagawara, D.O. Demchenko, U. Ozgur and I.U. Arachchige, Ge1xSnx Alloy Quantum Dots with Composition-Tunable Energy Gaps and Near-Infrared Photoluminescence, Nanoscale, 2018, 10(4), p 20296–20305. https://doi.org/10.1039/C8NR04399J

    Article  CAS  Google Scholar 

  29. Y. Gu, Q. Zhang, Y. Li, H. Wang and R.J. ** with Y3+ Ions, Mater Lett, 2009, 63(5), p 1448–1450. https://doi.org/10.1016/j.matlet.2009.03.045

    Article  CAS  Google Scholar 

  30. L. Zhao, J.S. Zhang, G. Ahmed, X. Liao and J.M. Greneche, Understanding the Element Segregation and Phase Separation in the Ce-Substituted Nd-(Fe, Co)-B Based Alloys, Sci Rep, 2018, 8(1), p 68–26. https://doi.org/10.1038/41598-018-25230-0

    Article  Google Scholar 

  31. X. Li, J. Yang, X. Feng and C. Zhang, Electrochemical Performance of Porous Ni–Cr–Mo–Cu Alloys for Hydrogen Evolution Reactions in Alkali Solution, Mater Res Ex, 2020, 9(2), p 1–14. https://doi.org/10.1088/2053-1591/abb562

    Article  CAS  Google Scholar 

  32. X.H. Wang and Y.C. Zhou, Microstructure and Properties of Ti3alc2 Prepared by the Solid-Liquid Reaction Synthesis and Simultaneous in-Situ Hot Pressing Process, Acta Mater., 2002, 50, p 3143–3151. https://doi.org/10.1016/1359-6454(02)00117-9

    Article  Google Scholar 

  33. R.A. Masumura, B.B. Rath and C.S. Pande, Analysis of Cu–Ni Diffusion in a Spherical Geometry for Excess Vacancy Production, Acta Mater, 2002, 50, p 4535–4544. https://doi.org/10.1016/S1359-6454(02)00273

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is financially supported by the Natural Science Foundation of China (51974217, 51704221) and outstanding youth fund of Wuhan Polytechnic University (2018J05).

Author information

Authors and Affiliations

Authors

Contributions

X Li craft and writing, Y Fan literature research, Y Liu software, J Liu and J Yang funding and Review, Y Zhu and J Li language modification.

Corresponding authors

Correspondence to Jili Liu or Junsheng Yang.

Ethics declarations

Conflict of interest

Conflict of interest The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Fan, Y., Liu, Y. et al. Effect of Sn Content on the Pore Structures of Porous Ni-Sn Alloys Produced by Reactive Synthesis Sintering Method. J. of Materi Eng and Perform 32, 135–143 (2023). https://doi.org/10.1007/s11665-022-07088-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07088-6

Keywords

Navigation