Log in

Microwave-Assisted Hybrid Sintering of 316L Powder Compacts: Microstructure, Mechanical, and Electrochemical Properties

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present study investigates the effect of microwave hybrid heating on the densification, microstructure, mechanical and electrochemical responses of 316L powder compacts at various sintering conditions (solidus and super-solidus). The sintering, mechanical and electrochemical properties are correlated with the microstructural attributes (pore morphologies) and densification characteristics. The microwave hybrid heating of samples at the super-solidus (1300 ºC) region has resulted in more cumulative atomic diffusions. It provides pore filling capabilities that reduce the pore count, thereby enhanced the density (90 ± 1.5%). The tuning of pore morphologies for the samples sintered at 1300 ºC for 60 min has resulted in the higher tensile strength of 457 ± 5.3 MPa with 23 ± 1.4% ductility. It is also observed that an increase in sintering temperature results in higher corrosion resistance in the order of ten times. The passive oxide film resistance (Rox) and charge transfer resistance (Rct) derived from EIS measurements have shown eight and twelve times higher values for the samples sintered at 1300 ºC for 60 min than 1200 ºC for 30 min samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Muthuchamy, R. Kumar, A.R. Annamalai, D.K. Agrawal and A. Upadhyaya, An Investigation on Effect of Heating Mode and Temperature on Sintering of Fe-P Alloys, Mater. Charact., 2016, 114, p 122–135. https://doi.org/10.1016/j.matchar.2016.02.015

    Article  Google Scholar 

  2. A.R. Annamalai, A. Upadhyaya and D. Agrawal, Effect of Ni3Al Addition and Heating Mode on The Electrochemical Response on Austenitic and Ferritic Stainless Steels, Powd. Metall. Met. Cera., 2016, 55(5–6), p 288–296. https://doi.org/10.1007/s11106-016-9804-1

    Article  Google Scholar 

  3. S.K. Rajput, J. Kumar, Y. Mehta, T. Soota and K.K. Saxena, Microstructural Evolution and Mechanical Properties of 316L Stainless Steel Using Multiaxial Forging, Adv. Mater. Process. Technol., 2020, 6(3), p 509–518. https://doi.org/10.1080/2374068X.2020.1728641

    Article  Google Scholar 

  4. P. Boillot and J. Peultier, Use of Stainless Steels in the Industry: Recent and Future Developments, Procedia. Eng., 2014, 83, p 309–321.

    Article  Google Scholar 

  5. A.R. Annamalai, A. Upadhyaya and D.K. Agrawal, Effect of Heating Mode and Electrochemical Response on Austenitic and Ferritic Stainless Steels, Can. Metall. Q., 2015, 54(2), p 142–148. https://doi.org/10.1179/1879139515Y.0000000001

    Article  Google Scholar 

  6. M. Sahli, J.-C. Gelin and T. Barrière, Simulation and Modelling of Sintering Process for 316L Stainless Steel Metal Injection Molding Parts, Adv. Mater. Process. Technol., 2016, 1(3), p 577–585.

    Google Scholar 

  7. F.L. Serafini, M. Peruzzo, I. Krindges, M.F.C. Ordoñez, D. Rodrigues, R.M. Souza and M.C.M. Farias, Microstructure and Mechanical Behavior of 316L Liquid Phase Sintered Stainless Steel with Boron Addition, Mater. Charact., 2019, 152, p 253–264. https://doi.org/10.1016/j.matchar.2019.04.009

    Article  Google Scholar 

  8. S. Singh, D. Gupta, V. Jain and A.K. Sharma, Microwave Processing of Materials and Applications in Manufacturing Industries: A Review, Mater. Manuf. Processes., 2015, 30(1), p 1–29.

    Article  Google Scholar 

  9. A.V. Movchan, A.P. Bachurin and E.A. Chernoivanenko, Transformations with Liquid Phase Presence in Sintering of Powder High-Speed Steel, Metall. Min. Ind., 2017, 1, p 58–64.

    Google Scholar 

  10. D.Y. Park, D.S. Shin, H.J. Park, Y.J. Baik, Y.J. Oh and S.J. Park, Sintering Behavior of Addictive Boron in Stainless Steel Via Master Sintering Curves and Microstructural Verification Using Image Processing, Mater. Charact., 2019, 149, p 63–73. https://doi.org/10.1016/j.matchar.2019.01.008

    Article  Google Scholar 

  11. M. Vattur Sundaram, K.B. Surreddi, E. Hryha, A. Veiga, S. Berg, F. Castro and L. Nyborg, Enhanced Densification of PM Steels by Liquid Phase Sintering with Boron-Containing Master Alloy, Metall. Mater. Trans. A., 2018, 49A, p 255–263.

    Article  Google Scholar 

  12. A. Nirala, Effect of Fe3P and Cu Addition on Sintering Behavior of 434L Ferritic Stainless Steel in Reducing (H2) Atmosphere, Metallogr. Microstruct. Anal., 2020, 9, p 117–126.

    Article  Google Scholar 

  13. O. Coovattanachai, N. Tosangthum, M. Morakot**da, T. Yotkaew, A. Daraphan, R. Krataitong, B. Vetayanugul and R. Tongsri, Performance Improvement of P/M 316L by Addition of Liquid Phase Forming Powder, Mater. Sci. Eng. A., 2007, 445–446, p 440–445. https://doi.org/10.1016/j.msea.2006.09.105

    Article  Google Scholar 

  14. W.F. Wang and M.J. Wu, Effect of Silicon Content and Aging Time on Density, Hardness, Toughness and Corrosion Resistance of Sintered 303LSC–Si Stainless Steels, Mater. Sci. Eng. A., 2006, 425, p 167–171.

    Article  Google Scholar 

  15. S. Ghasemi, M. Azadbeh, M. Mousapour, A. Mohammadzadeh, H. Danninger and N. Salimi, The Role of Pore Evolution During Supersolidus Liquid Phase Sintering of Prealloyed Brass Powder, Powder Metall., 2020, 63(3), p 187–196.

    Article  Google Scholar 

  16. A. Muthuchamy, A.R. Annamalai and R. Ranka, Mechanical and Electrochemical Characterization of Super-Solidus Sintered Austenitic Stainless Steel (316L), High Temp. Mater. Processes., 2016, 35(7), p 643–651. https://doi.org/10.1515/htmp-2015-0083

    Article  Google Scholar 

  17. S.R. Kandala, K. Balani and A. Upadhyaya, Mechanical and Electrochemical Characterization of Supersolidus Sintered Austenitic Stainless Steel (316 L), High Temp. Mater. Processes, 2019, 38(2019), p 792–805. https://doi.org/10.1515/htmp-2019-0032

    Article  Google Scholar 

  18. C. Singhal, Q. Murtaza and Parvej, Microwave Sintering of Advanced Composites Materials: A Review, Mater. Today: Proc., 2018, 5(11), p 24287–24298. https://doi.org/10.1016/j.matpr.2018.10.224

    Article  Google Scholar 

  19. A. Upadhyaya and G. Sethi, Effect of Heating Mode on the Densification and Microstructural Homogenization Response of Premixed Bronze, Scr. Mater., 2007, 56, p 469–472.

    Article  Google Scholar 

  20. B.H. DUAN, Z. ZHANG, D.Z. WANG and Z.H.O.U. Tao, Microwave Sintering of Mo Nanopowder and its Densification Behavior, Trans. Nonferrous Met. Soc. China, 2019, 29(8), p 1705–1713. https://doi.org/10.1016/S1003-6326(19)65077-6

    Article  Google Scholar 

  21. R.M. Anklekar, D.K. Agrawal and R. Roy, Microwave Sintering and Mechanical Properties of PM Copper Steel, Powder Metall., 2001, 44, p 355–362.

    Article  Google Scholar 

  22. R.M. Anklekar, K. Bauer, D. Agrawal and R. Roy, Improved Mechanical Properties and Microstructural Development of Microwave Sintered Copper and Nickel Steel PM Parts, Powder Metall., 2005, 48, p 39–46.

    Article  Google Scholar 

  23. A.K. Sharma and R.R. Mishra, Role of Particle Size in Microwave Processing of Metallic Material Systems, J. Mater. Sci. Technol., 2017, 43, p 1–15.

    Google Scholar 

  24. Y. Zhenhua, X. Weihao, H. Bin, Y. Qingqing and J. Jiang, Characteristics of 14Cr-ODS Ferritic Alloy Fabricated by Mechanically Alloying and Microwave Sintering, J. Nucl. Mater., 2015, 461, p 95–99.

    Article  Google Scholar 

  25. J. Sun, W. Wang, Q. Yue, C. Ma, J. Zhang, X. Zhao and Z. Song, Review on Microwave–Metal Discharges and Their Applications in Energy and Industrial Processes, Appl. Energy., 2016, 175, p 141–157.

    Article  Google Scholar 

  26. J. Sun, W. Wang and Q. Yue, Review on Microwave-Matter Interaction Fundamentals and Efficient Microwave-Associated Heating Strategies, Materials., 2016, 9(231), p 1–25.

    Google Scholar 

  27. S. Pandya, K.S. Ramakrishna, A.R. Annamalai and A. Upadhyaya, Effect of Sintering Temperature on the Mechanical and Electrochemical Properties of Austenitic Stainless Steel, Mater. Sci. Eng., A., 2012, 556, p 271–277.

    Article  Google Scholar 

  28. C.-D. Wen and C.T. Lu, Suitability of Multispectral Radiation Thermometry Emissivity Models for Predicting Steel Surface Temperature, J. Thermophys. Heat Trans., 2010, 24(3), p 662–665.

    Article  Google Scholar 

  29. ASTM International., Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements, G102–89, ASTM Int'l 100 Barr Harbour Dr., P.O. box C-700, West Conshohocken, Pennsylvania, (2010) (US), p 19428–2959

  30. K. Veera Venkata Nagaraju, S. Kumaran and T. Srinivasa Rao, Microwave Sintering Response of Different Grade Stainless Steels and Its Influence on Metallurgical Properties, Metall. Powder., 2021 https://doi.org/10.1080/00325899.2021.1981656

    Article  Google Scholar 

  31. R.R. Mishra and A.K. Sharma, Microwave Heating Characteristics of Bulk Metallic Materials and Role of Oxides, J. Mater. Sci., 2018, 53, p 567–584.

    Article  Google Scholar 

  32. K.V.V. Nagaraju, S. Kumaran and T. Srinivasa Rao, Microwave Sintering of 316L Stainless Steel: Influence of Sintering Temperature and Time, Mater. Today: Proc., 2020, 27, p 2066–2071. https://doi.org/10.1016/j.matpr.2019.09.062

    Article  Google Scholar 

  33. J. Hötzer, V. Rehn, W. Rheinheimer, M.J. Hoffmann and B. Nestler, Phase-Field Study of Pore-Grain Boundary Interaction, J. Ceram. Soc. Jpn., 2016, 124(4), p 329–339.

    Article  Google Scholar 

  34. A. Muthuchamy and A. RajaAnnamalai, Effect of TiC Addition and Heating Mode on The Electrochemical Response of Powder Metallurgy Processed Corrosion-Resistant Austenitic and Ferritic Steels, Met. Sci. Heat. Treat., 2018, 60, p 1–2.

    Article  Google Scholar 

  35. M.C. Baran and B.A. Shaw, Corrosion Modes in P/M Ferritic Stainless Steels, Int. J. Powder. Metall., 2000, 36(4), p 57–68.

    Google Scholar 

  36. E. Otero, A. Pardo, E. Saenz, M.V. Utrilla and F.J. Perez, Corrosion Behavior of AISI 304L and 316L Stainless Steels Prepared by Powder Metallurgy in the Presence of Sulfuric and Phosphoric Acid, Corros. Sci., 1998, 40(8), p 1421–1434.

    Article  Google Scholar 

  37. M. Moradi, D. Ghorbani, M.K. Moghadam, M. Kazazi, F. Rouzbahani and S. Karazi, Nd:YAG Laser Hardening of AISI 410 Stainless Steel: Microstructural evaluation, Mechanical Properties, and Corrosion Behavior, J. Alloys. Compd., 2019, 795, p 213–222.

    Article  Google Scholar 

  38. K. Veera Venkata Nagaraju, S. Kumaran and T. Srinivasa Rao, Electrochemical Behavior of Various Grade P/M Stainless Steels Processed by Rapid Microwave Hybrid Sintering (Super-Solidus) Method, Mater. Lett., 2021, 302, p 130394.

    Article  Google Scholar 

  39. M.A. Hussein, C. Suryanarayana, M.K. Arumugam and N. Al-Aqeeli, Effect of Sintering Parameters on Microstructure, Mechanical Properties and Electrochemical bEhavior of Nb–Zr Alloy for Biomedical Applications, Mater. Des., 2015, 83, p 344–351.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinnaeruvadi Kumaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagaraju, K.V.V., Kumaran, S. & Rao, T.S. Microwave-Assisted Hybrid Sintering of 316L Powder Compacts: Microstructure, Mechanical, and Electrochemical Properties. J. of Materi Eng and Perform 31, 9555–9572 (2022). https://doi.org/10.1007/s11665-022-06948-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06948-5

Keywords

Navigation