Log in

Influence of Thermomechanical Processing on Microstructure and Mechanical Properties of MoNbTaW Refractory High-Entropy Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present work, a refractory high-entropy alloy of the composition MoNbTaW has been synthesized by vacuum arc melting starting with elemental powders. The alloy formed as a solid solution with the body-centered cubic crystal structure. Thermomechanical processing was performed, and the sizeable compressive strain induced during this step aided in removing the dendritic microstructure in the as-cast sample. Further homogenization at 1400 °C for 20 h showed partial recrystallization (as studied by Electron Backscatter Diffraction). The sample subjected to thermomechanical processing followed by homogenization exhibited higher hardness than similar refractory high-entropy alloys in the literature. Detailed estimations on probable strengthening mechanisms in this system under various processing conditions suggest that solid solution strengthening is the dominant mechanism. The obtained Tabor factor for each processing condition of this alloy is in the range of 2.6–2.9, and these numbers are in close agreement with those observed for various metallic materials, including high-entropy alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5
Fig. 6.
Fig. 7
Fig. 8.
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E.P. George, D. Raabe and R.O. Ritchie, High-Entropy Alloys, Nat. Rev. Mater., 2019, 4(8), p 515–534.

    Article  CAS  Google Scholar 

  2. J. Chen, X. Zhou, W. Wang, B. Liu, Y. Lv, W. Yang, D. Xu and Y. Liu, A Review on Fundamental of High Entropy Alloys with Promising High-Temperature Properties, J. Alloys Compd., 2018, 760, p 15–30.

    Article  CAS  Google Scholar 

  3. D.B. Miracle, O.N. Senkov, A Critical Review of High Entropy Alloys and Related Concepts. Acta Mater. 1–64 (2016).

  4. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang and P.K. Liaw, Refractory High- Entropy Alloys, Intermetallics, 2010, 18(9), p 1758–1765.

    Article  CAS  Google Scholar 

  5. Z.D. Han, H.W. Luan, X. Liu, N. Chen, X.Y. Li, Y. Shao and K.F. Yao, Microstructures and Mechanical Properties of TixNbMoTaW Refractory High-Entropy Alloys, Mater. Sci. Eng. A, 2018, 712, p 380–385.

    Article  CAS  Google Scholar 

  6. X.J. Gao, L. Wang, N.N. Guo, L.S. Luo, G.M. Zhu, C.C. Shi, Y.Q. Su and J.J. Guo, Microstructure Characteristics and Mechanical Properties of Hf05Mo05NbTiZr Refractory High Entropy Alloy with Cr Addition, Int. J. Refract. Met. Hard Mater., 2021, 95, p 105405.

    Article  CAS  Google Scholar 

  7. O.N. Senkov, G.B. Wilks, J.M. Scott and D.B. Miracle, Mechanical Properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 Refractory High Entropy Alloys, Intermetallics, 2011, 19(5), p 698–706.

    Article  CAS  Google Scholar 

  8. Y. Zou, S. Maiti, W. Steurer and R. Spolenak, Size-Dependent Plasticity in an Nb25Mo25Ta25W25 Refractory High-Entropy Alloy, Acta Mater., 2014, 65, p 85–97.

    Article  CAS  Google Scholar 

  9. Y. Zou, P. Okle, H. Yu, T. Sumigawa, T. Kitamura, S. Maiti, W. Steurer and R. Spolenak, Fracture Properties of a Refractory High Entropy Alloy: In Situ Micro-Cantilever and Atom Probe Tomography Studies, Scr. Marter., 2017, 128, p 95–99.

    Article  CAS  Google Scholar 

  10. F.U. Jian-xin, C.A.O. Cheng-ming, T.O.N.G. Wei and P.E.N.G. Liang-ming, Effect of Thermomechanical Processing on Microstructure and Mechanical Properties of CoCrFeNiMn High Entropy Alloy, Trans. Nonferrous Met. Soc. China, 2018, 28, p 931–938.

    Article  Google Scholar 

  11. P. Mukhopadhyay, Structural Metallurgy of Refractory Metals, Miner. Proc. Extr. Metall. Rev., 2018, 22(1), p 121–138.

    Article  Google Scholar 

  12. K.A. Gschneidner et al., Binary Alloy Phase Diagrams, ASM, Metals Park (OH), 1986.

    Google Scholar 

  13. D.A. Porter, K.E. Easterling and M.Y. Sherif, Phase Transformations in Metals and Alloys, 3rd ed. CRC Press, US, 1992, p 189–220

    Book  Google Scholar 

  14. W.L. Zhao, D.P. Wang, H.D. Wang, S.C. Ma, Y.Y. Wang and Y.Q. Zhang, Grain Boundary Segregation and Precipitation During the Plastic Deformation of 30Cr2Ni4MoV Steel, Mater. Trans., 2018, 59(5), p 822–828.

    Article  CAS  Google Scholar 

  15. J.L. Zhang, C.C. Tasan, M.J. Lai, D. Yan and D. Raabe, Partial Recrystallization of Gum Metal to Achieve Enhanced Strength and Ductility, Acta Mater., 2017, 135, p 400–410.

    Article  CAS  Google Scholar 

  16. S. Raveendra, S. Mishra, K.V. Mani Krishna, H. Weiland and I. Samajdar, Patterns of Recrystallization in Warm- and Hot-Deformed AA6022, Metall. Mater. Trans. A, 2008, 39, p 2760–2771.

    Article  Google Scholar 

  17. B. Kang, J. Lee, H.J. Ryu and S.H. Hong, Ultra-High Strength WNbMoTaV High-Entropy Alloys with Fine Grain Structure Fabricated by Powder Metallurgical Process, Mater. Sci. Eng. A, 2018, 712, p 616–624.

    Article  CAS  Google Scholar 

  18. G. Ramya Sree, P. Sai Karthik, K. Bhanu Sankara Rao and K.V. Rajulapati, Strengthening Mechanisms in Equiatomic Ultrafine Grained AlCoCrCuFeNi High-Entropy Alloy Studied by Micro- and Nanoindentation Methods, Acta Mater., 2017, 125, p 58–68.

    Article  Google Scholar 

  19. R. Labusch, A Statistical Theory of Solid Solution Hardening, Phys. Stat. Sol., 1970, 41(2), p 659–669.

    Article  Google Scholar 

  20. I. Toda-Caraballo and P.E.J. Rivera-Díaz-Del-Castillo, Modelling Solid Solution Hardening in High Entropy Alloys, Acta Mater., 2015, 85, p 14–23.

    Article  CAS  Google Scholar 

  21. H. Yao, J.-W. Qiao, M.C. Gao, J.A. Hawk, S.-G. Ma and H. Zhou, MoNbTaV Medium-Entropy Alloy, Entropy, 2016, 18, p 189.

    Article  Google Scholar 

  22. O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle and C.F. Woodward, Microstructure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy, J. Alloys Compd., 2011, 509, p 6043–6048.

    Article  CAS  Google Scholar 

  23. W. Guo, B. Liu, Y. Liu, T. Li, Fu. Ao, Q. Fang and Y. Nie, Microstructures and Mechanical Properties of Ductile NbTaTiV Refractory High Entropy Alloy Prepared by powder Metallurgy, J. Alloys Compd., 2019, 776, p 428–436.

    Article  CAS  Google Scholar 

  24. O.N. Senkov, D.B. Miracle and K.J. Chaput, Development and Exploration of Refractory High Entropy Alloys-A Review, J. Mater. Res., 2018, 33(19), p 3092–3128.

    Article  CAS  Google Scholar 

  25. W. Martienssen and H. Warlimont Eds., Handbook of Condensed Matter and Materials Data, Springer, New York, 2005

    Google Scholar 

  26. L.A. Gypen and A. Deruyttere, Multi-Component Solid Solution Hardening, J. Mater Sci., 1977, 12, p 1028–1033.

    Article  CAS  Google Scholar 

  27. G.E. Dieter, Mechanical Metallurgy, 3rd ed. Mc Graw-Hill Book Co, New York, 1988, p 184–193

    Google Scholar 

  28. S. Chen, K.-K. Tseng, Y. Tong, W. Li, C.-W. Tsai, J.-W. Yeh and P.K. Liaw, Grain Growth and Hall-Petch Relationship in a Refractory HfNbTaZrTi High-Entropy Alloy, J. Alloys Compd., 2019, 795, p 19–26.

    Article  CAS  Google Scholar 

  29. M.A. Meyers and K.K. Chawla, Mechanical Behavior of Materials, 2nd ed. Cambridge University Press, Cambridge, 2009, p 345–347

    Google Scholar 

  30. M.J. Jang, D.-H. Ahn, J. Moon, J.W. Bae, D. Yim, J.-W. Yeh, Y. Estrin and H.S. Kim, Constitutive Modeling of Deformation Behavior of High-Entropy Alloys with Face-Centered Cubic Crystal Structure, Mater. Res. Lett., 2017, 5(5), p 350–356.

    Article  CAS  Google Scholar 

  31. H. Courtney, Mechanical Behavior of Materials, 2nd ed. New York, McGraw Hill Education, 2013, p 159–160

    Google Scholar 

  32. S. Peng, S. Mooraj, R. Feng, L. Liu, J. Ren, Y. Liu, F. Kong, Z. **ao, C. Zhu, P.K. Liaw and W. Chen, Additive Manufacturing of Three-Dimensional (3D)-Architected CoCrFeNiMn High- Entropy Alloy with Great Energy Absorption, Scr. Mater., 2021, 190, p 46–51.

    Article  CAS  Google Scholar 

  33. K. Ma, H. Wen, Hu. Tao, T.D. Top**, D. Isheim, D.N. Seidman, E.J. Lavernia and J.M. Schoenung, Acta Mater., 2014, 62, p 141–155.

    Article  CAS  Google Scholar 

  34. A. Belyakov, M. Tikhonova, P. Dolzhenko, T. Sakai and R. Kaibyshev, On Kinetics of Grain Refinement and Strengthening by Dynamic Recrystallization, Adv. Eng. Mater., 2019, 21, p 1800104.

    Article  Google Scholar 

  35. P. Zhang, S.X. Li and Z.F. Zhang, General Relationship Between Strength and Hardness, Mater. Sci. Eng. A, 2011, 529(1), p 62–73.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI). The authors sincerely thank late Dr. G. Padmanabham, former Director of ARCI, for his support in carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi C. Gundakaram.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanchi, A., Rajulapati, K.V., Rao, B.S. et al. Influence of Thermomechanical Processing on Microstructure and Mechanical Properties of MoNbTaW Refractory High-Entropy Alloy. J. of Materi Eng and Perform 31, 7964–7972 (2022). https://doi.org/10.1007/s11665-022-06855-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06855-9

Keywords

Navigation