Log in

Solid-State Diffusion Bonding of Pseudo-α-Ti Alloy to Ti-Stabilized Stainless Steel: With and Without Interlayer

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Solid-state diffusion bonding of pseudo-α-Ti alloy and Ti-stabilized stainless steel (SS321), with and without Ni interlayer, was investigated in the temperature range of 800-940 °C for different times. Microstructural investigation of the bond interfaces in the directly bonded diffusion couple showed a distinct diffusion zone which was composed of layers of (1) Fe-Ti intermetallic phases (Fe2Ti and FeTi), (2) transformed β-Ti and (3) (α+β) Ti. Shear strength of the joint was seen to be dependent on the thickness of diffusion zone and intermetallic phase layer. For direct diffusion bonding, maximum shear strength of 223.6 ± 17 MPa was observed for the joints processed at a temperature of 920 °C with a holding time of 8 min under a load corresponding to ~0.8 times yield strength (YS) of Ti alloy. Shear strength results showed that the optimum thickness of the Fe-Ti intermetallic phase layer is approximately 2 ± 0.5 µm. For the diffusion bonding joints in the presence of a Ni interlayer, formation of layers of Ni-Ti intermetallic compounds (Ni3Ti, NiTi and NiTi2) was observed at the interface between Ni and Ti alloys. Joint bonded at 940 °C with a holding time of 1 min under a load of 0.8 × YS showed the maximum shear strength of 180 ± 23 MPa. The optimum thickness of the Ni-Ti intermetallic layers for maximum shear strength was found to be approximately 5 ± 2 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D. Mo, T. Song, Y. Fang, X. Jiang, C.Q. Luo, M.D. Simpson and Z. Luo, A Review on Diffusion Bonding between Titanium Alloys and Stainless Steels, Adv. Mater. Sci. Eng., 2018, 2018, p 8701.

    Article  Google Scholar 

  2. G.B. Kale, R.V. Patil and P.S. Gawade, Interdiffusion Studies in Titanium-304 Stainless Steel System, J. Nucl. Mater., 1998, 257, p 44–50.

    Article  CAS  Google Scholar 

  3. Y. **a, P. Li, X. Hao and H. Dong, Interfacial Microstructure and Mechanical Property of TC4 Titanium alloy/316L Stainless Steel Joint Brazed with Ti-Zr-Cu-Ni-V Amorphous Filler Metal, J. Manuf. Process., 2018, 35, p 382–395.

    Article  Google Scholar 

  4. Q. Zhou, R. Liu, Q. ZHOU, P. Chen and L. Zhu, Microstructure Characterization and Tensile Shear Failure mechanism of the Bonding Interface of Explosively Welded Titanium-Steel Composite, Mater. Sci. Eng. A., 2021, 820, p 141559.

    Article  CAS  Google Scholar 

  5. N.F. Kazakov, Diffusion Bonding of Materials, 1st ed. Mir Publishers, Moscow, 1985.

    Google Scholar 

  6. S. Li, D. Du, Y. Jiu, J. Qin, Q. Liu and W. Long, Brazing of C/C Composite and TiAl Alloy Using TiNiSi Filler Metal Added Cu Interlayer, J. Mater. Eng. Perform., 2021 https://doi.org/10.1007/s11665-021-06251-9

    Article  Google Scholar 

  7. C. Liu, C. Mao, L. Cui, X. Zhou, L. Yu and Y. Liu, Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels, Acta Metall. Sin., 2021, 57(11), p 1521–1538.

    CAS  Google Scholar 

  8. J. **ong, Y. Peng, M. Samiuddin, L. Yuan and J. Li, Common Mechanical Properties of Diffusion Bonded Joints and Their Corresponding Microstructure Features, J. Mater. Eng. Perform., 2020, 29, p 3277–3286.

    Article  CAS  Google Scholar 

  9. B. Aleman, L. Gutierrez and J.J. Urcola, Interface Microstructures in Diffusion Bonding of Titanium Alloys to Stainless and Low Alloy Steels, Mater. Sci. Technol., 1993, 9, p 633.

    Article  CAS  Google Scholar 

  10. T. Vigraman, D. Ravindran and R. Narayanasamy, Effect of Phase Transformation and Intermetallic Compounds on the Microstructure and Tensile Strength Properties of Diffusion-Bonded Joints Between Ti-6Al-4V and AISI 304L, Mater. Des., 2012, 36, p 714–727.

    Article  CAS  Google Scholar 

  11. K. Bhanumurthy and G.B. Kale, Reactive Diffusion Between Titanium and Stainless Steel, J. Mater. Sci. Lett., 1993, 12, p 1879–1881.

    Article  CAS  Google Scholar 

  12. M. Ghosh and S. Chatterjee, Characterization of Transition Joints of Commercially Pure Titanium to 304 Stainless Steel, Mater. Charact., 2002, 48, p 393–399.

    Article  CAS  Google Scholar 

  13. A. Elrefaey and W. Tillmann, Solid State Diffusion Bonding of Titanium to Steel Using a Copper Base Alloy as Interlayer, J. Mater. Process. Technol., 2009, 209, p 2746–2752.

    Article  CAS  Google Scholar 

  14. S. Kundu and S. Chatterjee, Interfacial Microstructure and Mechanical Properties of Diffusion-Bonded Titanium–Stainless Steel Joints Using a Nickel Interlayer, Mater. Sci. Eng. A., 2006, 425, p 107–113.

    Article  Google Scholar 

  15. C. Velmurugan, V. Senthilkumar, S. Sarala and J. Arivarasan, Low Temperature Diffusion Bonding of Ti-6Al-4V and Duplex Stainless Steel, J. Mater. Process. Technol., 2016, 234, p 272–279.

    Article  CAS  Google Scholar 

  16. S. Sam, S. Kundu and S. Chatterjee, Diffusion Bonding of Titanium Alloy to Micro-duplex Stainless Steel Using a Nickel Alloy Interlayer: Interface Microstructure and Strength Properties, Mater. Des., 2012, 40, p 237–244.

    Article  CAS  Google Scholar 

  17. P. He, J. Zhang, R. Zhou and X. Li, Diffusion Bonding Technology of a Titanium Alloy to a Stainless Steel Web With an Ni Interlayer, Mater. Charact., 1999, 43, p 287–292.

    Article  CAS  Google Scholar 

  18. T.F. Song, X.S. Jiang, Z.Y. Shao, Y.J. Fang, D.F. Mo, D.G. Zhu and M.H. Zhu, Microstructure and Mechanical Properties of Vacuum Diffusion Bonded Joints Between Ti-6Al-4V Titanium Alloy and AISI316L Stainless Steel Using Cu/Nb Multi-interlayer, Vacuum, 2017, 145, p 68–76.

    Article  CAS  Google Scholar 

  19. S. Taktak and H. Akbulut, Diffusion Kinetics of Explosively Treated and Plasma Nitride Ti-6Al-4V Alloy, Vacuum, 2004, 75, p 247–259.

    Article  CAS  Google Scholar 

  20. T.B. Massalski and H. Okamoto, Binary Alloy Phase Diagrams, 2nd ed. ASM International, Materials Park, 1990.

    Google Scholar 

  21. P. Novak, V. Vojtich, Z. Pecenova, F. Prua, P. Pokorny, D. Deduytsche, C. Detavernier, A. Bernatikova, P. Salvetr, A. Knaislova, K. Nova and L. Jaworska, Formation of Ni-Ti Intermetallics During Reactive Sintering at 800–900 °C, Mater. technol., 2017, 51, p 679–685.

    CAS  Google Scholar 

  22. C. Leyens and M. Peters, Titanium and Titanium Alloys—Fundamentals and Applications, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003.

    Book  Google Scholar 

  23. M.W. Mahoney and C.C. Bampton, Fundamentals of Diffusion Bonding, Welding, Brazing, And Soldering, Vol 6, 10th ed., D.L. Olson et al., Ed., ASM International, Materials Park, 1993

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr. S. K Ghosh, SO/H, Dr R. N Singh, Head, Mechanical Metallurgy Division Dr. V. Kain, Director Materials Group of Materials group and Head CDM, BARC, for providing the laboratory facilities during the investigation. The author would also like to acknowledge Shri B.K Mishra for provided all the logistical help for carrying out the experiments and Shri Bhupendra Kumawat for hel** to carry out shear testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, H., Bhattacharya, S. & Keskar, N.A. Solid-State Diffusion Bonding of Pseudo-α-Ti Alloy to Ti-Stabilized Stainless Steel: With and Without Interlayer. J. of Materi Eng and Perform 31, 7527–7538 (2022). https://doi.org/10.1007/s11665-022-06758-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06758-9

Keywords

Navigation