Log in

Grain Refinement Behavior of Accumulative Roll Bonding-Processed Mg-14Li-3Al-2Gd Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Mg-14Li-3Al-2Gd sheets were prepared by four-layer accumulative roll bonding (FARB). The grain size of Mg-14Li-3Al-2Gd alloy is refined from 252.8 to 5.3 μm after 4 cycles FARB. The refinement can be mainly attributed to the continuous dynamic recrystallization (CDRX). During FARB process, a large number of interlayer interfaces are introduced in the sheets, which have a significant impact on the CDRX. With the increase of FARB cycles, the interface spacing decreases rapidly. In the high cycles, some of layers are fully metallurgically bonded, which makes the corresponding interface disappear and the interface spacing becomes relatively increased. When the interface spacing is small, the dislocation first forms the lath-shaped substructure, then forms lath-shaped sub-grains with straight boundary. With the further deformation, necking and fracture occur in the lath-shaped sub-grain or other lath-shaped substructure, forming the equiaxed substructure with a small size. When the interface spacing is large, the substructure directly becomes equiaxed and randomly divides the deformed grains, forming the equiaxed sub-grains and grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

copyright 2021, with permission from Elsevier

Fig. 2
Fig. 3
Figure 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Figure 9

Similar content being viewed by others

References

  1. B.J. Wang, D.K. Xu, S.D. Wang et al., Influence of solution treatment on the corrosion fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy, Int. J. Fatig., 2019, 120, p 46–55.

    Article  Google Scholar 

  2. Y. Wang, S. Zhang, R.Z. Wu et al., Coarsening kinetics and strengthening mechanisms of core-shell nanoscale precipitates in Al-Li-Yb-Er-Sc-Zr alloy, J. Mater. Sci. Technol., 2021, 61, p 197–203.

    Article  CAS  Google Scholar 

  3. F. Zhong, H.J. Wu, Y.L. Jiao et al., Effect of Y and Ce on the microstructure, mechanical properties and anisotropy of as-rolled Mg-8Li-1Al alloy, J. Mater. Sci. Technol., 2020, 39, p 124–134.

    Article  Google Scholar 

  4. Q. Ji, Y.J. Ma, R.Z. Wu et al., Effect of Y and Ce addition on microstructures and mechanical properties of LZ91 alloys, J. Alloys Compd., 2019, 800, p 72–80.

    Article  CAS  Google Scholar 

  5. S.Y. **, H.Y. Liu, R.Z. Wu et al., Combination effects of Yb addition and cryogenic-rolling on microstructure and mechanical properties of LA141 alloy, Mater. Sci. Eng. A., 2020, 788, p 139611–139616.

    Article  CAS  Google Scholar 

  6. A. Etemad, G. Dini and S. Schwarz, Accumulative roll bonding (ARB)-processed high-manganese twinning induced plasticity (TWIP) steel with extraordinary strength and reasonable ductility, Mater. Sci. Eng. A, 2019, 742, p 27–32.

    Article  CAS  Google Scholar 

  7. H.F. Wang, C.Y. Ban, N.N. Zhao et al., Enhanced strength and ductility of nano-grained titanium processed by two-step severe plastic deformation, Mater. Lett., 2020, 266, p 127485.

    Article  CAS  Google Scholar 

  8. M.T. Pérez-Prado, D. Valle and O.A. Ruano, Grain refinement of Mg-Al-Zn alloys via accumulative roll bonding, Scr. Mater., 2004, 51, p 1093–1097.

    Article  Google Scholar 

  9. X. Li, T.A. Samman and G. Gottstein, Microstructure development and texture evolution of ME20 sheets processed by accumulative roll bonding, Mater. Lett., 2011, 65, p 1907–1910.

    Article  CAS  Google Scholar 

  10. M.Y. Zhan, W.W. Zhang and D.T. Zhang, Production of Mg-Al-Zn magnesium alloy sheets with ultrafine-grain microstructure by accumulative roll-bonding, Trans. Nonferrous Metals Soc. China, 2011, 21, p 991–997.

    Article  CAS  Google Scholar 

  11. M.Y. Zhan, Y.Y. Li and W.P. Chen, Improving mechanical properties of Mg-Al-Zn alloy sheets through accumulative roll-bonding, Trans. Nonferrous Metals Soc. China, 2008, 18, p 309–314.

    Article  Google Scholar 

  12. M. Karlík and P. Homolaa, Accumulative roll bonding: first experience with a twin-roll cast AA8006 alloy, J. Alloys Compd., 2004, 378, p 322–325.

    Article  Google Scholar 

  13. L.G. Hou, T.Z. Wang, R.Z. Wu et al., Microstructure and mechanical properties of Mg-5Li-1Al sheets prepared by accumulative roll bonding, J. Mater. Sci. Technol., 2018, 2018(34), p 317–323.

    Article  Google Scholar 

  14. J.H. Wang, L. Xu, R.Z. Wu et al., Enhanced electromagnetic interference shielding in a duplex-phase Mg-9Li-3Al-1Zn alloy processed by accumulative roll bonding, Acta Metall. Sin. (Engl. Lett.), 2020, 33, p 490–499.

    Article  CAS  Google Scholar 

  15. H.J. Wu, T.Z. Wang, R.Z. Wu et al., Microstructure and mechanical properties of Mg-5Li-1Al sheets processed by cross accumulative roll bonding, J. Manuf. Process, 2018, 46, p 139–146.

    Article  Google Scholar 

  16. Q. Ji, Y. Wang, R.Z. Wu et al., High specific strength Mg-Li-Zn-Er alloy processed by multi deformation processes, Mater. Charact., 2020, 160, p 110135–110142.

    Article  CAS  Google Scholar 

  17. K.N. Fu, H.J. Wang, M. Qiu et al., Effects of cold rolling on microstructural evolution and mechanical properties of Mg-14Li-1Zn alloy, Adv. Eng. Mater., 2019, 21, p 1801344–1801350. https://doi.org/10.1002/adem.201801344

    Article  CAS  Google Scholar 

  18. H.P. Zheng, R.Z. Wu, L.G. Hou et al., Microstructure and mechanical properties of Mg-14Li-3Al-2Gd Alloy processed by multilayer accumulative roll bonding, Adv. Eng. Mater., 2020, 22, p 1900774–1900784.

    Article  CAS  Google Scholar 

  19. J.H. Zhang, S.J. Liu, R.Z. Wu et al., Recent developments in high-strength Mg-RE-based alloys: focusing on Mg-Gd and Mg-Y systems, J. Magnesium Alloys, 2018, 6, p 277–291.

    Article  CAS  Google Scholar 

  20. Z. Wei, H.P. Zheng, R.Z. Wu et al., Interface behavior and tensile properties of Mg-14Li-3Al-2Gd sheets prepared by four-layer accumulative roll bonding, J. Manuf. Process., 2021, 61, p 254–260.

    Article  Google Scholar 

  21. M. Karami and R. Mahmudi, Hot shear deformation constitutive analysis and processing map of extruded Mg-12Li-1Zn bcc alloy, Mater. Design, 2014, 53, p 534–539.

    Article  CAS  Google Scholar 

  22. M.R. Barnett, Hot working microstructure map for magnesium AZ31, Mater. Sci. Forum, 2003, 426–432, p 515–520.

    Article  Google Scholar 

  23. Y. Xu, X.X. Zhang, W. Li et al., Ultrafine lamellar structure AM60B magnesium alloy sheet prepared by high strain rate rolling, Mater. Sci. Eng. A, 2020, 781, p 139221–139229.

    Article  CAS  Google Scholar 

  24. K. Qin, L.M. Yang and S.S. Hu, Mechanism of strain rate effect based on dislocation theory, Chin. Phys. Lett., 2009, 26, p 181–184.

    Google Scholar 

  25. Y. Zheng, H.G. Yan, J.H. Chen et al., Superplasticity behavior of ZK60 alloy sheet prepared by high strain rate rolling process, Trans. Nonferrous Met. Soc. China, 2014, 24, p 839–847.

    Article  CAS  Google Scholar 

  26. F. Zhong, T.Z. Wang, R.Z. Wu et al., Microstructure, texture, and mechanical properties of alternate α/β Mg-Li composite sheets prepared by accumulative roll bonding, Adv. Eng. Mater., 2017, 19, p 1600817–1600824.

    Article  Google Scholar 

  27. C.H. Ni, Q. Xu and F.C. Wang, Grain refinement process of pure iron target under hypervelocity impact, Trans. Nonferrous Metals Soc. China, 2011, 21, p 1029–1034.

    Article  CAS  Google Scholar 

  28. M.A. Afifi, Y.C. Wang, X. Cheng et al., Strain rate dependence of compressive behavior in an Al-Zn-Mg alloy processed by ECAP, J. Alloys Compd., 2019, 791, p 1079–1087.

    Article  CAS  Google Scholar 

  29. J. Wei, Q. Wang, L. Zhang et al., Microstructure refinement of Mg-Al-RE alloy by Gd addition, Mater. Lett., 2019, 246, p 125–128.

    Article  CAS  Google Scholar 

  30. H. Niels, Hall-Petch relation and boundary strengthening, Scr. Mater., 2004, 51, p 801–806.

    Article  Google Scholar 

  31. H.H. Yu, Y.C. **n, M.Y. Wang et al., Hall-Petch relationship in Mg alloys: a review, J. Mater. Sci. Technol., 2018, 34, p 248–256.

    Article  CAS  Google Scholar 

  32. Z. Trojanova, Z. Drozd, S. Kudela et al., Strengthening in Mg-Li matrix composites, Compos. Sci. Technol., 2007, 67, p 1965–1973.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper was supported by Natural Science Foundation of China (51771060, 51871068, 51971071, 52011530025), Domain Foundation of Equipment Advance Research of 13th Five-year Plan (61409220118), National Key Research and Development Program of China (2021YFE0103200), Zhejiang Province Key Research and Development Program (2021C01086), the Open Foundation of Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education (HEU10202104 & HEU10202113).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruizhi Wu or Legan Hou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, B., Zheng, H., Wu, R. et al. Grain Refinement Behavior of Accumulative Roll Bonding-Processed Mg-14Li-3Al-2Gd Alloy. J. of Materi Eng and Perform 31, 6617–6625 (2022). https://doi.org/10.1007/s11665-022-06757-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06757-w

Keywords

Navigation