Log in

Influence of Hardening Models on the Estimation of Residual Stresses by Finite Element Modeling in Type 316LN Stainless Steel Weld Joints

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present study, residual stress distribution in Activated-Tungsten Inert Gas (A-TIG) welded type 316LN stainless steel weld joints is estimated by using finite element model (FEM). The objective of the modeling is to estimate the influence of welding thermal cycle and various hardening models, namely isotropic, kinematic, mixed kinematic–isotropic and ideal plasticity on the welding residual stress distribution. The weld joints fabricated by utilizing single-pass and double-pass A-TIG welding technique were modeled by considering Goldak's double ellipsoid heat distribution model. The calculated thermal cycles were validated using experimental data and sequentially coupled to mechanical analysis for residual stress prediction. The computational results show that the weld metal volume significantly influences welding residual stress distribution. Meanwhile, isotropic hardening model results exhibited good comparison with the experimentally measured data obtained from x-ray diffraction and ultrasonic LCR-based measurements from the joints welded by A-TIG process. It is shown that residual stress prediction accuracy depends on hardening models. Both single-pass and double-pass A-TIG weldments exhibited a negligible distortion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Das Banik, S. Kumar, P.K. Singh, S. Bhattacharya, and M.M. Mahapatra, Prediction of Distortions and Residual Stresses in Narrow Gap Weld Joints Prepared by Hot Wire GTAW and Its Validation with Experiments, Int. J. Press. Vessel. Pip., 2021, 193, p 104477. https://doi.org/10.1016/j.ijpvp.2021.104477

    Article  CAS  Google Scholar 

  2. S. Yan, Z. Meng, B. Chen, C. Tan, X. Song, and G. Wang, Prediction of Temperature Field and Residual Stress of Oscillation Laser Welding of 316LN Stainless Steel, Opt. Laser Technol., 2022, 145, p 107493. https://doi.org/10.1016/j.optlastec.2021.107493

    Article  CAS  Google Scholar 

  3. A. Elmesalamy, J.A. Francis, and L. Li, A Comparison of Residual Stresses in Multi Pass Narrow Gap Laser Welds and Gas-Tungsten Arc Welds in AISI 316L Stainless Steel, Int. J. Press. Vessel. Pip., 2014, 113, p 49–59. https://doi.org/10.1016/j.ijpvp.2013.11.002

    Article  CAS  Google Scholar 

  4. A.R. Pavan, N. Chandrasekar, B. Arivazhagan, S. Kumar, and M. Vasudevan, Study of Arc Characteristics Using Varying Shielding Gas and Optimization of Activated-Tig Welding Technique for Thick AISI 316L(N) Plates, CIRP J. Manuf. Sci. Technol., 2021, 35, p 675–690. https://doi.org/10.1016/j.cirpj.2021.08.013

    Article  Google Scholar 

  5. K.H. Tseng and C.Y. Hsu, Performance of Activated TIG Process in Austenitic Stainless Steel Welds, J. Mater. Process. Technol., 2011, 211(3), p 503–512. https://doi.org/10.1016/j.jmatprotec.2010.11.003

    Article  CAS  Google Scholar 

  6. D. Howse, Developments in A-Tig Welding, Exploiting Advances in Arc Welding Technology, Woodhead Publishing Limited, 1999, https://doi.org/10.1533/9780857093158.1.3

  7. V. Muthukumaran, A. Bhaduri Kumar, and R. Baldev, Penetration Enhancing Flux Formulation for Tungsten Inert Gas (TIG) Welding of Austenitic Stainless Steel and Its Application, Vol 2, no 12, 2012, https://patents.google.com/patent/US8097826

  8. T. Sakthivel, M. Vasudevan, K. Laha, P. Parameswaran, K.S. Chandravathi, M.D. Mathew, and A.K. Bhaduri, Comparison of Creep Rupture Behaviour of Type 316L(N) Austenitic Stainless Steel Joints Welded by TIG and Activated TIG Welding Processes, Mater. Sci. Eng. A, 2011, 528(22–23), p 6971–6980. https://doi.org/10.1016/j.msea.2011.05.052

    Article  CAS  Google Scholar 

  9. J. Sule and S. Ganguly, Application of Local Mechanical Tensioning and Laser Processing to Modify the Residual Stress State and Microstructural Features of Multi-Pass HSLA Steel, SAE Int. J. Mater. Manuf., 2015, 8(2), p 141–150.

    Article  Google Scholar 

  10. H.S. Bang, H.S. Bang, Y.C. Kim, and I.H. Oh, A Study on Mechanical and Microstructure Characteristics of the STS304L Butt Joints Using Hybrid CO2 Laser-Gas Metal Arc Welding, Mater. Des., 2011, 32(4), p 2328–2333. https://doi.org/10.1016/j.matdes.2010.12.039

    Article  CAS  Google Scholar 

  11. M. Ragavendran and M. Vasudevan, Effect of Laser and Hybrid Laser Welding Processes on the Residual Stresses and Distortion in AISI Type 316L(N) Stainless Steel Weld Joints, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2021, 52(4), p 2582–2603. https://doi.org/10.1007/s11663-021-02202-w

    Article  CAS  Google Scholar 

  12. K.C. Ganesh, K.R. Balasubramanian, M. Vasudevan, P. Vasantharaja, and N. Chandrasekhar, Effect of Multipass TIG and Activated TIG Welding Process on the Thermo-Mechanical Behavior of 316LN Stainless Steel Weld Joints, Metall. Mater. Trans. B, 2016, 47(2), p 1347–1362. https://doi.org/10.1007/s11663-016-0600-6

    Article  CAS  Google Scholar 

  13. B. Kumar, S. Bag, S. Mahadevan, C.P. Paul, C.R. Das, and K.S. Bindra, On the Interaction of Microstructural Morphology with Residual Stress in Fiber Laser Welding of Austenitic Stainless Steel, CIRP J. Manuf. Sci. Technol., 2021, 33, p 158–175. https://doi.org/10.1016/j.cirpj.2021.03.009

    Article  Google Scholar 

  14. Y. Lu, H. Hui, and J. Gong, Influence of Welding Strength Matching Coefficient and Cold Stretching on Welding Residual Stress in Austenitic Stainless Steel, J. Mater. Eng. Perform., 2018, 27(6), p 3131–3143. https://doi.org/10.1007/s11665-018-3366-y

    Article  CAS  Google Scholar 

  15. S.K. Bate and P.J. Bouchard, Measurement and Modeling of Residual Stresses in Thick-Section Type 316 Stainless Steel Welds, Proceedings of Residual Stresses-ICRS, 2000, p 1511–1518

  16. S. Das Banik, S. Kumar, P.K. Singh, S. Bhattacharya, and M.M. Mahapatra, Distortion and Residual Stresses in Thick Plate Weld Joint of Austenitic Stainless Steel: Experiments and Analysis, J. Mater. Process. Technol., 2021, 289, p 116944. https://doi.org/10.1016/j.jmatprotec.2020.116944

    Article  CAS  Google Scholar 

  17. M.C. Smith, P.J. Bouchard, M. Turski, L. Edwards, and R.J. Dennis, Accurate Prediction of Residual Stress in Stainless Steel Welds, Comput. Mater. Sci., 2012, 54(1), p 312–328. https://doi.org/10.1016/j.commatsci.2011.10.024

    Article  CAS  Google Scholar 

  18. D. Deng, C. Zhang, X. Pu, and W. Liang, Influence of Material Model on Prediction Accuracy of Welding Residual Stress in an Austenitic Stainless Steel Multi-Pass Butt-Welded Joint, J. Mater. Eng. Perform., 2017, 26(4), p 1494–1505. https://doi.org/10.1007/s11665-017-2626-6

    Article  CAS  Google Scholar 

  19. H. Huang, S. Tsutsumi, J. Wang, L. Li, and H. Murakawa, High Performance Computation of Residual Stress and Distortion in Laser Welded 301L Stainless Sheets, Finite Elem. Anal. Des., 2017, 135, p 1–10. https://doi.org/10.1016/j.finel.2017.07.004

    Article  Google Scholar 

  20. Y. Ye, J. Cai, X. Jiang, D. Dai, and D. Deng, Influence of Groove Type on Welding-Induced Residual Stress, Deformation and Width of Sensitization Region in a SUS304 Steel Butt Welded Joint, Adv. Eng. Softw., 2015, 86, p 39–48. https://doi.org/10.1016/j.advengsoft.2015.04.001

    Article  Google Scholar 

  21. H. Wohlfahrt, T. Nitschke-Pagel, K. Dilger, D. Siegele, M. Brand, J. Sakkiettibutra, and T. Loose, Residual Stress Calculations and Measurements—Review and Assessment of the IIW Round Robin Results, Weld. World, 2012, 56(9–10), p 120–140. https://doi.org/10.1007/BF03321387

    Article  Google Scholar 

  22. O. Muránsky, C.J. Hamelin, M.C. Smith, P.J. Bendeich, and L. Edwards, The Effect of Plasticity Theory on Predicted Residual Stress Fields in Numerical Weld Analyses, Comput. Mater. Sci., 2012, 54(1), p 125–134. https://doi.org/10.1016/j.commatsci.2011.10.026

    Article  CAS  Google Scholar 

  23. D.M. Egle and D.E. Bray, Measurement of Acoustoelastic and Third-order Elastic Constants for Rail Steel, J. Acoust. Soc. Am., 1976, 60(3), p 741–744. https://doi.org/10.1121/1.381146

    Article  Google Scholar 

  24. R. Pamnani, G.K. Sharma, S. Mahadevan, T. Jayakumar, M. Vasudevan, and B.P.C. Rao, Residual Stress Studies on Arc Welding Joints of Naval Steel (DMR-249A), J. Manuf. Process., 2015, 20, p 104–111. https://doi.org/10.1016/j.jmapro.2015.09.004

    Article  Google Scholar 

  25. A.R. Pavan, B. Arivazhagan, M. Zubairuddin, S. Mahadevan, and M. Vasudevan, Thermomechanical Analysis of A-TIG and MP-TIG Welding of 2.25Cr-1Mo Steel Considering Phase Transformation, J. Mater. Eng. Perform., 2019, 28(8), p 4903–4917. https://doi.org/10.1007/s11665-019-04243-4

    Article  CAS  Google Scholar 

  26. N. Hempel, T. Nitschke-Pagel, and K. Dilger, Residual Stresses in Multi-Pass Butt-Welded Ferritic-Pearlitic Steel Pipes, Weld. World, 2015, 59(4), p 555–563. https://doi.org/10.1007/s40194-015-0230-7

    Article  Google Scholar 

  27. B. Qiang, Y. Li, C. Yao, X. Wang, and Y. Gu, Through-Thickness Distribution of Residual Stresses in Q345qD Butt-Welded Steel Plates, J. Mater. Process. Technol., 2018, 251, p 54–64. https://doi.org/10.1016/j.jmatprotec.2017.08.001

    Article  CAS  Google Scholar 

  28. D.R. Bajic, M.M. Savitsky, G.M. Melnichuk, and A.F. Lupan, A-Tig, Welding of Structural Steels for Power Engineering Applications, 2002.

  29. L. Chen, G. Mi, X. Zhang, and C. Wang, Numerical and Experimental Investigation on Microstructure and Residual Stress of Multi-Pass Hybrid Laser-Arc Welded 316L Steel, Mater. Des., 2019, 168, p 107653. https://doi.org/10.1016/j.matdes.2019.107653

    Article  CAS  Google Scholar 

  30. Y. Rong, Y. Huang, J. Xu, H. Zheng, and G. Zhang, Numerical Simulation and Experiment Analysis of Angular Distortion and Residual Stress in Hybrid Laser-Magnetic Welding, J. Mater. Process. Technol., 2017, 245, p 270–277. https://doi.org/10.1016/j.jmatprotec.2017.02.031

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (Pavan A R) thanks the Department of Atomic Energy (DAE), India, for granting research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. R. Pavan or M. Vasudevan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is an invited submission to the Journal of Materials Engineering and Performance selected from presentations at the symposium “Joining,” belonging to the area “Processing” at the European Congress and Exhibition on Advanced Materials and Processes (EUROMAT 2021), held virtually from September 12-16, 2021, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavan, A.R., Arivazhagan, B., Sharma, G.K. et al. Influence of Hardening Models on the Estimation of Residual Stresses by Finite Element Modeling in Type 316LN Stainless Steel Weld Joints. J. of Materi Eng and Perform 31, 6988–6997 (2022). https://doi.org/10.1007/s11665-022-06654-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06654-2

Keywords

Navigation