Log in

Effects of Different Forms of Polytetrafluoroethylene Microparticles on Fretting Wear Resistance and Mechanical Properties of Polycarbonate/Acrylonitrile Butadiene Styrene Composites

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Polycarbonate (PC)/acrylonitrile butadiene styrene (ABS) composites with excellent comprehensive performance have been widely applied and studied, but their fretting wear resistance needs to be improved for automobile, electronics and marine applications. Two different forms of polytetrafluoroethylene (PTFE) particles (flake and spherical) were adopted to improve the fretting wear resistance of PC/ABS composites, and PC/ABS/PTFE composites were prepared by using a self-developed twin-eccentric rotor extruder. The effects of the two forms PTFE particles on the fretting wear resistance and mechanical properties of the composites were studied. Especially, the fretting wear behaviors of the composites with GCr15 ordinary steel and M30MN2 marine steel balls as friction pairs were compared. The results indicate that the two different forms of PTFE particles were dispersed uniformly in the matrixes, and they can effectively improve comprehensive properties of the composites. Moreover, the flake PTFE has better improvement effects on the fretting wear resistance and mechanical properties of the composites, which accelerate the coefficient of friction and Kv values of PC/ABS composites decreased from 1.110 to 0.231 and from 22.33 to 1.41 (× 10−3mm3/N∙m), respectively, and the impact strength increased by 85.7%. During fretting wear, fatigue and adhesive wear mainly occurs in PC/ABS composites, but only adhesive wear occurs when PTFE particles are added. In addition, during the wear process, the debris forms transfer film, which also improves the fretting friction performance of the PC/ABS composites.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Reference

  1. H. Li, G. Jiang, Q. Fang et al., Experimental Investigation on the Essential work of Mixed-Mode Fracture of PC/ABS Alloy, J. Mech. Sci. Technol., 2015, 29(1), p 33–38.

    Article  Google Scholar 

  2. M. Ishikawa, Stability of Plastic Deformation and Toughness of Polycarbonate blended with Poly (Acrylonitrile-Butadiene-Styrene) Copolymer, Polymer, 1995, 36(11), p 2203–2210.

    Article  CAS  Google Scholar 

  3. S.M. Lai, R.C. Hsu, C.Y. Hsieh et al., Comparisons of Polycarbonate and Polycarbonate/carbon Nanotube Nanocomposites and Their Microcellular Foams Prepared Using Supercritical Carbon Dioxide, J. Mater. Sci., 2015, 50(5), p 2272–2283.

    Article  CAS  Google Scholar 

  4. C. Yin, Q. Zhang, J. Gu et al., Cure Characteristics and Mechanical Properties of Styrene-Butadiene Rubber/Hydrogenated Acrylonitrile-Butadiene Rubber/Silica Composites, J. Polym. Res., 2011, 18(6), p 2487–2494.

    Article  CAS  Google Scholar 

  5. K. Friedrich, Polymer Composites for Tribological Applications, Adv. Ind. Eng. Polym. Res., 2018, 1, p 3–39.

    Google Scholar 

  6. Q.Z. Fang, T.J. Wang and H.M. Li, Overload Effect on the Fatigue Crack Propagation of PC/ABS Alloy, Polymer, 2007, 48(22), p 6691–6706.

    Article  CAS  Google Scholar 

  7. L. Lei and J. Plank, A Concept for a Polycarboxylate Superplasticizer Possessing Enhanced Clay Tolerance, Cem. Concr. Res., 2012, 42(10), p 1299–1306.

    Article  CAS  Google Scholar 

  8. M.I. Triantou, E.M. Chatzigiannakis and P.A. Tarantili, Evaluation of Thermal Degradation Mechanisms and Their Effect on the Gross Calorific Value of ABS/PC/Organoclay Nanocomposites, J. Therm. Anal. Calorim., 2015, 119(1), p 337–347.

    Article  CAS  Google Scholar 

  9. T. Chinnadurai and V.S. Arungalai, Thermal and Structural Analysis of Ultrasonic-Welded PC/ABS Blend for Automobile Applications, J. Therm. Anal. Calorim., 2017, 127(3), p 1995–2003.

    Article  CAS  Google Scholar 

  10. J.N. Sunitha, C.S. Rajesh and S.K. Rai, Electromagnetic Interference Shielding Effectiveness and Electrical Conductivity of Ni Coated PCABS/PPS Composites with Reinforcement of Carbon fibre, Polym. Polym. Compos., 2016, 24(1), p 57–64.

    CAS  Google Scholar 

  11. T. Pandim, T. Doca, A.R. Figueiredo et al., Torsional Fretting Wear Experimental Analysis of a R3 Offshore Steel Against a PC/ABS Blend, Tribol Int, 2019, 143, p 106090.

    Article  Google Scholar 

  12. S. Fouvry and P. Kapsa, Surface Damage Under Reciprocating Sliding, Fundamentals of Tribology and Bridging the Gap Between the Macro- and Micro/Nanoscales, NATO Science Series (Series II: Mathematics, Physics and Chemistry), B. Bhushan, Ed., 2001.

  13. D. Play, Mutual Overlap Coefficient and Wear Debris Motion in Dry Oscillating Friction and Wear Tests, A S L E Trans., 1985, 28(4), p 527–535.

    Article  Google Scholar 

  14. R.B. Waterhouse, Fretting Corrosion, Pergamon Press, Oxford, 1972, p 4–5

    Google Scholar 

  15. Z.H. Tan, Q. Guo, Z.P. Zhao et al., Characteristics of Fretting Wear Resistance for Unfilled Engineering Thermoplastics, Wear, 2011, 271(9–10), p 2269–2273.

    Article  CAS  Google Scholar 

  16. R.B. Waterhouse, Fretting wear, Proceedings of International Conference on Wear of Materials. S.K. Rhee et al., Ed., ASME, New York, 1981, p 17–22

    Google Scholar 

  17. X. **aocui, W. Yunxia, W. Mengjiao et al., Fretting Friction and Wear Properties of Nano Zinc Filled UHMWPE Composites, Lubr. Seal., 2019, 44(5), p 40–45.

    Google Scholar 

  18. G.H. Majzoobi, K. Azadikhah and J. Nemati, The Effects of Deep Rolling and Shot Peening on Fretting Fatigue Resistance of Aluminum-7075-T6, Mater. Sci. Eng. A, 2009, 516(1–2), p 235–247.

    Article  Google Scholar 

  19. F. Yildiz, A.F. Yetim, A. Alsaran et al., Fretting Fatigue Properties of Plasma Nitrided AISI 316 L Stainless Steel: Experiments and Finite Element Analysis, Tribol. Int., 2011, 44(12), p 1979–1986.

    Article  CAS  Google Scholar 

  20. K.A. Laux, H.J. Sue, A. Montoya et al., Wear Behavior of Polyaryletherketones Under Multi-directional Sliding and Fretting Conditions, Tribol. Lett., 2015, 58(3), p 41.

    Article  Google Scholar 

  21. F. Chinas-Castillo and H.A. Spikes, The Behavior of Colloidal Solid Particles in Elastohydrodynamic Contacts, Tribol. Trans., 2000, 43(3), p 387–394.

    Article  Google Scholar 

  22. L. Chang, Z. Zhang, C. Breidt et al., Tribological Properties of Epoxy Nanocomposites: I. Enhancement of the Wear Resistance by Nano TiO2 Particles, Wear, 2005, 258(1), p 141–148.

    Article  CAS  Google Scholar 

  23. A.D. Moghadam, E. Omrani, P.L. Menezes et al., Mechanical and Tribological Properties of Selflubricating Metal Matrix Nanocomposites Reinforced by Carbon Nanotubes (CNTs) and graphene -A Review, Compos. Part B Eng., 2015, 77, p 402–420.

    Google Scholar 

  24. B. Li, W. Xv, P. Liu et al., Novel Green Lubricated Materials: Aqueous PAI-MoS2-Graphite Bonded Solid Lubricating Coating, Prog. Org. Coat., 2021, 155(78), p 106225.

    Article  CAS  Google Scholar 

  25. Q. Wang, X. Zhang, X. Pei et al., Friction and Wear Properties of Solid Lubricants Filled/Carbon Fabric Reinforced Phenolic Composites, J. Appl. Polym. Sci., 2010, 117(4), p 2480–2485.

    Article  CAS  Google Scholar 

  26. Wang Q, Wang Y, Wang H, et al. (2017) Comparative study of the effects of nano‐sized and micro-sized CF and PTFE on the thermal and tribological properties of PEEK composites. Polym. Adv. Technol. 2017.

  27. Q. Wang, H. Wang, N. Fan et al., Combined Effect of Fibers and PTFE Nanoparticles on Improving the Fretting Wear Resistance of UHMWPE-Matrix Composites, Polym. Adv. Technol., 2016, 27(5), p 642–650.

    Article  CAS  Google Scholar 

  28. H.C. Min, J. Ju, S.J. Kim et al., Tribological Properties of Solid Lubricants (Graphite, Sb2S3, MoS2) for Automotive Brake Friction Materials, Wear, 2006, 260(7–8), p 855–860.

    Google Scholar 

  29. A. Savan, E. Pflüger, P. Voumard et al., Modern Solid Lubrication: Recent Developments and applications of MoS2, Lubr. Sci., 2020, 12(2), p 185–203.

    Article  Google Scholar 

  30. A. Yw, B. Yd, A. Jd et al., Friction Reduction of Water Based Lubricant with Highly Dispersed Functional MoS2 Nanosheets –Science Direct, Colloids Surf. A Physicochem. Eng. Asp., 2019, 562, p 321–328.

    Article  Google Scholar 

  31. J. Bijwe, S. Sen and A. Ghosh, Influence of PTFE Content in PEEK-PTFE Blends on Mechanical Properties and Tribo-performance in Various Wear Modes, Wear, 2005, 258(10), p 1536–1542.

    Article  CAS  Google Scholar 

  32. H. Hunke, N. Soin, T. Shah, E. Kramer, K. Witan and E. Siores, Influence of Plasma Pre-Treatment of Polytetrafluoroethylene (PTFE) Micropowders on the Mechanical and Tribological Performance of Polyethersulfone (PESU)-PTFE Composites, Wear, 2015, 328, p 480–487.

    Article  Google Scholar 

  33. D.L. Burris and W.G. Sawyer, Tribological Behavior of PEEK Components with Compositionally graded PEEK/PTFE Surfaces, Wear, 2007, 262(1–2), p 220–224.

    Article  CAS  Google Scholar 

  34. G. **an, R. Walter and F. Haupert, Friction and Wear of epoxy/TiO2 Nanocomposites: Influence of Additional Short Carbon Fibers, Aramid and PTFE Particles, Compos. Sci. Technol., 2006, 66(16), p 3199–3209.

    Article  CAS  Google Scholar 

  35. M. Sharma and J. Bijwe, Surface Designing of Carbon Fabric Polymer Composites with Nano and Micron sized PTFE Particles, J. Mater. Sci., 2012, 47(12), p 4928–4935.

    Article  CAS  Google Scholar 

  36. W. Wei, L. **aojun, L. Kun et al., Experimental Study on the Tribological Properties of Powder Lubrication under Plane Contact, Springer, Berlin Heidelberg, 2009.

    Book  Google Scholar 

  37. M.K. Dubey, J. Bijwe and S.S.V. Ramakumar, PTFE Based Nano-Lubricants, Wear, 2013, 306(1–2), p 80–88.

    Article  Google Scholar 

  38. M.S. Khan, R. Franke, U. Gohs et al., Friction and Wear Behaviour of Electron Beam Modified PTFE filled EPDM Compounds, Wear, 2009, 266(1–2), p 175–183.

    Article  CAS  Google Scholar 

  39. M.K. Dubey, J. Bijwe and S. Ramakumar, Effect of Dispersant on Nano-PTFE Based Lubricants on Tribo-Performance in Fretting Wear Mode, RSC Adv., 2016, 6(27), p 22604–22614.

    Article  CAS  Google Scholar 

  40. M.K. Dubey, J. Bijwe and S. Ramakumar, Nano-PTFE: New Entrant as a Very Promising EP Additive, Tribol. Int., 2015, 87, p 121–131.

    Article  CAS  Google Scholar 

  41. T. Onodera, J. Nunoshige, K. Kawasaki et al., Structure and Function of Transfer Film Formed from PTFE/PEEK Polymer Blend, J. Phys. Chem. C, 2017, 121, p 14589–14596.

    Article  CAS  Google Scholar 

  42. B. Chen, J. Wang and F. Yan, Microstructure of PTFE-Based Polymer Blends and Their Tribological Behaviors Under Aqueous Environment, Tribol. Lett., 2012, 45(3), p 387–395.

    Article  CAS  Google Scholar 

  43. Y. Zhao, X. Qi, W. Zhang et al., Effects of Copper Nanoparticles Located in Different Regions of Polytetrafluoroethylene/Polyimide Blends on the Morphology, Mechanical and Tribological Properties of PTFE Composites, Tribol. Lett., 2019, 67(1), p 1–17.

    Article  Google Scholar 

  44. A. Brandon, A. Krick et al., Ultralow Wear Fluoropolymer Composites: Nanoscale Functionality from Microscale Fillers, Tribol. Int., 2016, 95, p 245–255.

    Article  Google Scholar 

  45. Y. Wang and F. Yan, Tribological Properties of Transfer Films of PTFE-Based Composites, Wear, 2006, 261(11), p 1359–1366.

    Article  CAS  Google Scholar 

  46. J.V. Voort and S. Bahadur, The Growth and Bonding of Transfer Film and the Role of CuS and PTFE in the Tribological Behavior of PEEK, Wear, 1995, 181–183(part-P1), p 212–221.

    Article  Google Scholar 

  47. M.-Z. Ica, Mixing and Compounding of Polymers: Theory and Practice, Carl Hanser Verlag GmbH Co KG, Cincinnati, 2012.

    Google Scholar 

  48. J.P. Qu, G.Z. Zhang and X.C. Yin, Eccentric Rotor Volume Pulsation Deformation Plasticizing Conveying Method and Device. Guangdong Province, CN104002447B, 2015.

  49. G.Z. Zhang, T. Wu, W.Y. Lin et al., Preparation of Polymer/Clay Nanocomposites via Melt Intercalation Under Continuous Elongation Flow, Compos. Sci. Technol., 2017, 145, p 157–164.

    Article  CAS  Google Scholar 

  50. Y. He, Z.T. Yang and J.P. Qu, Super-toughed Poly (lactic acid)/Thermoplastic Poly(ether)urethane Nanofiber Composites with In-situ Formation of Aligned Nanofibers Prepared by an Innovative Eccentric Rotor Extruder, Compos. Sci. Technol., 2018, 169, p 135–141.

    Article  Google Scholar 

  51. D. Yuan, T. Wu, R.Y. Chen et al., Investigation on Properties of Polypropylene/Multi-walled Carbon Nanotubes Nanocomposites Prepared by a Novel Eccentric Rotor Extruder Based on Elongational Rheology, J. Macromol. Sci. Part B, 2018, 57, p 348–363.

    Article  CAS  Google Scholar 

  52. He. Fang, S. Juan, Q. **g and G. **nli, Effect of POE-g-GMA on Mechanical Properties of PC/ABS Alloy, Appl. Eng. Plast., 2014, 42(08), p 98–100.

    Google Scholar 

  53. Z.Y. Tan, X.F. Xu, S.L. Sun et al., Influence of Rubber Content in ABS in Wide Range on the Mechanical Properties and Morphology of PC/ABS Blends with Different Composition, Polym. Eng. Sci., 2010, 46(10), p 1476–1484.

    Article  Google Scholar 

  54. F. Yan and H. Zhou, Measurement and Calculation of Wear Volume of Ball-Disk Fretting Wear parts, Tribology, 1995, 15, p 145–151.

    Google Scholar 

  55. K. Bonny, P.D. Baets, J. Vleugels et al., Impact of Cr3C2/VC addition on the Dry sliding Friction and Wear Response of WC-Co Cemented Carbides, Wear, 2009, 267(9), p 1642–1652.

    Article  CAS  Google Scholar 

  56. K.S. Cole and R.H. Cole, Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics, J. Chem. Phys., 1941, 9(4), p 341.

    Article  CAS  Google Scholar 

  57. C. Friedrich and H. Braun, Generalized Cole-Cole Behavior and its Rheological Relevance, Rheol. Acta, 1992, 31(4), p 309–322.

    Article  CAS  Google Scholar 

  58. X. **n, Y. Wang, Z. Meng Z et al., Fretting Wear Behavior of WS2/725Ultra-High Molecular Weight Polyethylene Nanocomposites. Ind. Lubr. Tribol., 2020, 73(1), p 60–67.

    Article  Google Scholar 

  59. X. Hu, F. Lai, S. Qu et al., Effects of Microstructure Evolution on Fretting Wear Behaviors of 25CrNi2MoVE Steel Under Different Tempering States, Met. Open Access Metal. J., 2020, 10(3), p 351.

    CAS  Google Scholar 

  60. J.K. Lancaster, Polymer-Based Bearing Materials - The Role of Fillers and Fiber Reinforcement. Wear 1972, 22(3), p 412–413.

    Article  Google Scholar 

  61. Z. Cai and J. Wang, The Tribological Properties of Polyetheretherketone Composite After Adding PTFE Powder, Mech. Eng. Mater., 2018, 42(356(05)), p 73–77.

    Google Scholar 

  62. A.A. Pitenis, K.L. Harris, C.P. Junk et al., Ultralow Wear PTFE and Alumina Composites: It is All About Tribochemistry, Tribol. Lett., 2015, 57(2), p 4.

    Article  Google Scholar 

  63. S. Bahadur, The Development of Transfer Layers and Their Role in Polymer Tribology, Wear, 2000, 245(1–2), p 92–99.

    Article  CAS  Google Scholar 

  64. H. Renhe, W. Li and Xu. Wang, Solid Lubricant and its Application in Resin Based Antifriction Composites, J. Mater. Sci. Eng., 2005, 2(5), p 625–628.

    Google Scholar 

  65. S. Bahadur and D. Tabor, The Wear of Filled Polytetrafluoroethylene, Wear, 1984, 98, p 1–13.

    Article  CAS  Google Scholar 

  66. S. Dan and J. Shilei, Study on Friction and Wear Properties of Polytetrafluoroethylene Modified Polyketone, Shanghai Plast., 2020, 191(3), p 46–51.

    Google Scholar 

  67. J. Andrzejewski, A.K. Mohanty and M. Misra, Development of Hybrid Composites reinforced with Biocarbon/Carbon Fiber System. The Comparative Study for PC, ABS and PC/ABS Based Materials, Compos. Part B Eng., 2020, 200, p 108319.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the National Key Research and Development Program of China (Grant No. 2019YFB1704900), the Natural Science Foundation of Guangdong Province (Grant Nos. 2021A1515012609, 2021A1515010487), and the Characteristic innovation project of colleges and universities in Guangdong Province (Grant No. 2020KTSCX007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guizhen Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Liao, Y., Song, J. et al. Effects of Different Forms of Polytetrafluoroethylene Microparticles on Fretting Wear Resistance and Mechanical Properties of Polycarbonate/Acrylonitrile Butadiene Styrene Composites. J. of Materi Eng and Perform 31, 5245–5258 (2022). https://doi.org/10.1007/s11665-022-06628-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06628-4

Keywords

Navigation