Log in

Effects of Curved Microchannel Surfaces with Sn-Ag-Cu and MXene-Ti3C2 on Tribological Performance of M50 Bearing Steel in Solid–Liquid Composite Lubrication System

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In order to further understand the role of MXene-Ti3C2 in oil–solid synergistic lubrication, three kinds of microporous channel composites, M50, M50-Sn-Ag-Cu and M50-Sn-Ag-Cu-Ti3C2, were designed and prepared in this study. Tribological behaviors under different environmental conditions of oil lubrication and dry friction were analyzed. The results show that M50-Sn-Ag-Cu-Ti3C2 exhibits excellent tribological properties under oil lubrication. Mxene-Ti3C2 enhances the strength of solid lubricant film, so that the oil film can give full play to the antifriction and wear resistance of solid lubricant film. The synergistic effect of lubricating oil, solid lubricants and bionic curved microchannel reduces the friction coefficient and wear rate. The vibration acceleration along the reciprocating direction is also reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J.F. Li, H.P. Zhao, H.J. Shi and X.Q. Feng, Effects of Surface Defects on the Rolling Contact Fatigue Behaviors of Cr4Mo4V Steel, J, Aeronautical Mater., 2005, 25(6), p 5–10.

    Google Scholar 

  2. J. Nygaard, M. Rawson, P. Danson and H. Bhadeshia, Bearing Steel Microstructures After Aircraft Gas Turbine Engine Service, J. Mater. Sci. Technol., 2014, 30(15), p 1911–1918.

    Article  CAS  Google Scholar 

  3. F. Michael, G. Peter, H. Markus, M. Matthias, C. Francois and P. Dimitra, Experimental and Numerical Investigation of the Outer ring Cooling Concept in a Hybrid and in an all-Steel Ball Bearing Used in Aero-Engines by the Introduction of a Helical Duct, Aerospace, 2018, 5(1), p 23.

    Article  Google Scholar 

  4. D.T. Gerardi, H.K. Trivedi and L. Rosado, Evaluation of Fatigue and Wear Characteristics of m50 Steel Using MIL-L-7808k, Int. J. of Fatigue., 1996, 18(3), p 191–196.

    Article  CAS  Google Scholar 

  5. J.H. Xue, W. Li and C. Qin, The Scuffing Load Capacity of Involute Spur Gear Systems Based on Dynamic Loads and Transient Thermal Elastohydrodynamic Lubrication, Tribol. Int., 2014, 79, p 74–83.

    Article  Google Scholar 

  6. C. Gachot, A. Rosenkranz, S.M. Hsu and H.L. Costa, A Critical Assessment of Surface Texturing for Friction and Wear Improvement, Wear, 2017, 372, p 21–41.

    Article  Google Scholar 

  7. K. Holmberg, A. Matthews and H. Ronkainen, Coatings Tribology—Contact Mechanisms and Surface Design, Tribol. Int., 1998, 31, p 107–120.

    Article  CAS  Google Scholar 

  8. L. Rapoport, A. Moshkovich, V. Perfilyev, I. Lapsker, G. Halperin, Y. Itovich and I. Etsion, Friction and wear of MoS2 films on laser textured steel surfaces, Surf. Coat. Technol., 2008, 202, p 3332–3340.

    Article  CAS  Google Scholar 

  9. A. Moshkovith, V. Perfiliev, D. Gindin, N. Parkansky, R. Boxman and L. Rapoport, Surface Texturing using Pulsed Air Arc Treatment, Wear, 2007, 263, p 1467–1469.

    Article  CAS  Google Scholar 

  10. X.Y. Liu, X.L. Shi, G.C. Lu, X.B. Deng, H.Y. Zhou, Z. Yan, Y. Chen and B. Xue, The Synergistic Lubricating Mechanism of Sn-Ag-Cu and C60 on the Worn Surface of M50 Self-Lubricating Material at Elevated Loads, J. Alloy. Compd., 2019, 777, p 271–284.

    Article  CAS  Google Scholar 

  11. G.C. Lu, X.L. Shi, J. Zhang, H.Y. Zhou, Y.W. Xue and A. Ibrahim, Effects of Surface Composite Structure with Micro-Grooves and Sn-Ag-Cu on Reducing Friction and Wear of Ni3Al Alloys, Surf. Coat. Tech., 2020, 387, p 125540.

    Article  CAS  Google Scholar 

  12. J. Zhang, G.C. Lu, X.L. Shi, Z.Y. Yang, Y.W. Xue and H.Y. Zhou, Improving Tribological Performance of Inconel 625 by Combining Groove-Textured Surfaces with Sn-Ag-Cu Solid Lubricant, J. Mater. Eng. Perform., 2021, 30, p 154–164.

    Article  CAS  Google Scholar 

  13. X.Y. Liu, X.L. Shi, Y.C. Huang, X.B. Deng, G.C. Lu, Z. Yan and B. Xue, Tribological Behavior and Self-Healing Functionality of M50 Material Covered with Surface Micropores Filled with Sn-Ag-Cu, Tribol. Int., 2018, 128, p 365–375.

    Article  CAS  Google Scholar 

  14. A. Mm, C. Gui, W.B. Bo, C. Vmf, D. Sk and D. Bm, Effective Usage of 2D Mxene Nanosheets as Solid Lubricant: Influence of Contact Pressure and Relative Humidity, Appl. Surf. Sci., 2020, 531, p 147311.

    Article  Google Scholar 

  15. M. Marian, S. Tremmel, S. Wartzack, G. Song, B. Wang, Yu. Ji and A. Rosenkranz, Mxene Nanosheets as an Emerging Solid Lubricant for Machine Elements–Towards Increased Energy Efficiency and Service Life, Appl. Surf. Sci., 2020, 523, p 146503.

    Article  CAS  Google Scholar 

  16. J.F. Chen and W.J. Zhao, Simple Method for Preparing Nanometer Thick Ti3C2TX Sheets Towards Highly Efficient Lubrication and Wear Resistance, Tribol. Int., 2021, 153, p 106598.

    Article  CAS  Google Scholar 

  17. J. Hu, S.B. Li, J. Zhang, Q.Y. Chang, W.B. Yu and Y. Zhou, Mechanical Properties and Frictional Resistance of Al Composites Reinforced with Ti3C2Tx MXene, Chin. Chem. Lett., 2020, 31, p 996–999.

    Article  CAS  Google Scholar 

  18. H. Yan, M. Cai, W. Li, X.Q. Fan and M.H. Zhu, Amino-Functionalized Ti3C2Tx with Anti-Corrosive/Wear Function for Waterborne Epoxy Coating, J. Mater. Sci. Technol., 2020, 54, p 144–159.

    Article  Google Scholar 

  19. P. Chen, X. **ang, T.M. Shao, Y.Q. La and J.L. Li, Effect of Triangular Texture on the Tribological Performance of Die Steel with TiN Coatings Under Lubricated Sliding Condition, Appl. Surf. Sci., 2016, 389, p 361–368.

    Article  CAS  Google Scholar 

  20. Y. Ando and T. Sumiya, Friction Properties of Micro/Nanogroove Patterns in Lubricating Conditions, Tribol. Int., 2020, 151, p 106428.

    Article  CAS  Google Scholar 

  21. Y.W. Xue, X.L. Shi, Q.P. Huang, K.P. Zhang and C.H. Wu, Effects of Groove-Textured Surfaces with Sn-Ag-Cu and MXene-Ti3C2 on Tribological Performance of CSS-42L Bearing Steel in Solid-Liquid Composite Lubrication System, Tribol. Int., 2021, 161, p 107099.

    Article  CAS  Google Scholar 

  22. D.Y. Zhang, F.F. Zhao, X. Wei, F. Gao, P.Y. Li and G.N. Dong, Effect of Texture Parameters on the Tribological Properties of Spheroidal Graphite Cast Iron Groove-Textured Surface Under Sand-Containing Oil Lubrication Conditions, Wear, 2019, 428, p 470–480.

    Article  Google Scholar 

  23. X.F. Jiang, J.J. Song, S.N. Chen, Y.F. Su, H.Z. Fan, Y.S. Zhang and L.T. Hu, In-Situ Fabricated Bulk Metallic Glass/Graphite Composites with a 3D lubricating layer: Tribological Properties Under Dry Sliding and in Seawater, Tribol. Int., 2020, 148, p 106301.

    Article  CAS  Google Scholar 

  24. W. Tillmann, D. Stangier, N.F. Lopes-Dias, D. Biermann and E. Krebs, Adjustment of Friction by Duplex-Treated, Bionic Structures for Sheet-Bulk Metal Forming, Tribol. Int., 2017, 111, p 9–17.

    Article  CAS  Google Scholar 

  25. C.J. Su, Z.Y. Fu, H. Sun and X. Shen, Research on the Friction Performance of Bionic Surface Based on the Clamber Animal Foot Pad, Appl. Mech. Mater., 2013, 427–429, p 298–301.

    Article  Google Scholar 

  26. F. Kairi, O. Masayuki, H. Hiromu and K. Shinpei, Bearing Characteristic of Journal Bearing Applied Biomimetics, Tribol. Int, 2020, 150, p 106345.

    Article  Google Scholar 

  27. Z. Long, J. Wu, Z. Si, S. Sun, Z. Zhang, L. Song, Z. Liu and L. Ren, Bionic Coupling of Hardness Gradient to Surface Texture for Improved Anti-wear Properties, J. Bionic. Eng., 2016, 13(3), p 406–415.

    Article  Google Scholar 

  28. W. Wang, X.Y. Wei, K. Meng, L.H. Zhong, Y. Wang and X.H. Yu, Bio-Tribology Properties of Bionic Carp Scale Morphology on Ti6A14V Surface, Adv. Mater. Sci. Eng., 2017, 281, p 012060.

    Google Scholar 

  29. Y. J. Wang, Study on Fabrication, Characterization and Tribological Properties of High Temperature Self-lubrication Metal Ceramics with Sweat gland Structure, Ph.D. Thesis, Wuhan University of Technology, 2008 (in Chinese)

  30. T. Lv and X. Wang, Snake-Cree** Locomotion Experiment and Dynamic Imitation of Snake-Like Curves in Movement, J. Shanghai Jiaotong Univ., 1998, 32(1), p 132–135. (in Chinese)

    Google Scholar 

  31. American Society for Testing and Materials, Standard Test Method for Vickers hardness of Metallic Materials. ASTM E92-82e2, 2003

  32. American Society for Testing and Materials, Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus. ASTM G99-95, 1995

  33. W.Q. Lian, Y.J. Mai, C.S. Liu, L.Y. Zhang, S.L. Li and X.H. Jie, Two-Dimensional Ti3C2 Coating as an Emerging Protective Solid-Lubricant for Tribology, Ceram. Int., 2018, 44(16), p 20154–20162.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Guangdong Basic and Applied Basic Research Foundation (2021A1515010624). Authors are also grateful to X.L. Nie, Y.M. Li, M.J. Yang, W.T. Zhu, S.L. Zhao and L.Q. Qin in Material Research and Test Center of WUT for their kind help with SEM, EPMA and FESEM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **aoliang Shi or Chaohua Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, F., Shi, X., Wu, C. et al. Effects of Curved Microchannel Surfaces with Sn-Ag-Cu and MXene-Ti3C2 on Tribological Performance of M50 Bearing Steel in Solid–Liquid Composite Lubrication System. J. of Materi Eng and Perform 31, 5837–5850 (2022). https://doi.org/10.1007/s11665-022-06611-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06611-z

Keywords

Navigation