Log in

Fretting Characterization of Carbon-Fiber-Reinforced Polyetheretherketone Composites with Different Fiber Orientations

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Failure caused by fretting is the main failure form of orthopedic implants. Two different fiber orientations (0°/90° and 0°/60°) carbon fiber (CF)-reinforced polyetheretherketone (PEEK) composite materials were prepared by the UD laminate method. This study investigates the fretting wear behavior of two different fiber orientations. By changing the normal forces and displacement amplitude, the FtD curve, the running condition for the fretting map and the friction coefficient curve are established. Use WLI, SEM and EDS to explore the wear mechanism of CFR-PEEK composite materials. The results show that the two fiber orientations have similar running conditions for the fretting map. And the main wear mechanisms of the two composites are abrasive wear, adhesive wear and oxidative wear. However, the dissipation energy, friction coefficient, wear depth and wear volume of the CFR-PEEK composites with 0°/90° fiber orientation are less than 0°/60° fiber orientation. The CFR-PEEK composites with a fiber orientation of 0°/90° have a better fretting characterization. The experimental results may play a certain guiding role in the field of CFR-PEEK composite medical materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J.S. Yeom, M.S. Chung, C.K. Lee et al., Evaluation of Pedicle Screw Position on Computerized Tomography Scans, J. Neurosurg., 2003, 98(1), p 104–109.

    Google Scholar 

  2. L. Gjesteby, B.D. Man, Y.N. ** et al., Metal Artifact Reduction in CT: Where Are We After Four Decades?, IEEE Access, 2016, 4, p 5826–5849.

    Article  Google Scholar 

  3. C. Fleck and D. Eifler, Corrosion, Fatigue and Corrosion Fatigue Behaviour of Metal Implant Materials, Especially Titanium Alloys, Int. J. Fatigue, 2010, 32(6), p 929–935.

    Article  CAS  Google Scholar 

  4. L. Rony, R. Lancigu and L. Hubert, Intraosseous Metal Implants in Orthopedics: A Review, Morphologie, 2018, 102, p 231–242.

    Article  CAS  Google Scholar 

  5. S.Y. Jauch, L.G. Coles, L.V. Ng et al., Low Torque Levels Can Initiate a Removal of the Passivation Layer and Cause Fretting in Modular Hip Stems, Med. Eng. Phys., 2014, 36(9), p 1140–1146.

    Article  CAS  Google Scholar 

  6. C.K. Akkan, E.M. Hammadeh, A. May et al., Surface Topography and Wetting Modifications of PEEK for Implant Applications, Lasers. Med. Sci., 2014, 29(5), p 1633–1639.

    Article  Google Scholar 

  7. X.C. Meng, W. Zhang, Z.G. Yuan et al., A Partial Hemi-Resurfacing Preliminary Study of a Novel Magnetic Resonance Imaging Compatible Polyetheretherketone Mini-Prosthesis for Focal Osteochondral Defects, J. Orthop. Transl., 2021, 26, p 67–73.

    Google Scholar 

  8. J.J. Zhu, F. **e and R.S. Dwyer-Joyce, PEEK Composites as Self-Lubricating Bush Materials for Articulating Revolute Pin Joints, Polymers, 2020, 12(3), p 665.

    Article  CAS  Google Scholar 

  9. H.D. Xu, D.K. Zhang, K. Chen et al., Taper Fretting Behavior of PEEK Artificial Hip Joint, Tribol. Int., 2019, 137, p 30–38.

    Article  CAS  Google Scholar 

  10. G.L. Pan, Q. Guo, W.D. Zhang et al., Fretting Wear Behaviors of Nanometer Al2O3 and SiO2 Reinforced PEEK Composites, Wear, 2009, 266(11), p 1208–1215.

    Article  CAS  Google Scholar 

  11. R. Ma and T.T. Tang, Current Strategies to Improve the Bioactivity of PEEK, Int. J. Mol. Sci., 2014, 15(4), p 5426–5445.

    Article  Google Scholar 

  12. M. Regis, A. Lanzutti, P. Bracco et al., Wear Behavior of Medical Grade PEEK and CFR PEEK Under Dry and Bovine Serum Conditions, Wear, 2018, 408–409, p 86–95.

    Article  Google Scholar 

  13. E.L. Steinbergn, E. Rath, A. Shlaifer et al., Carbon Fiber Reinforced PEEK Optima—A Composite Material Biomechanical Properties and Wear/Debris Characteristics of CF-PEEK Composites for Orthopedic Trauma Implants, J. Mech. Behav. Biomed. Mater., 2013, 17, p 221–228.

    Article  Google Scholar 

  14. C.Z. Peng and X.Z. Li, The Mechanical Properties of PEEK/CF Composites Reinforced with ZrO2 Nanoparticles, Mech. Compos. Mater., 2014, 49(6), p 679–684.

    Article  CAS  Google Scholar 

  15. Q.F. Wang, Y.X. Wang, H.L. Wang et al., Comparative Study of the Effects of Nano-Sized and micro-sized CF and PTFE on the Thermal and Tribological Properties of PEEK Composites, Polym. Adv. Technol., 2017, 29, p 896–905.

    Article  Google Scholar 

  16. J. Song, Z.H. Liao, H.Y. Shi et al., Fretting Wear Study of PEEK-Based Composites for Bio-Implant Application, Tribol. Lett., 2017, 65(4), p 1–11.

    Article  CAS  Google Scholar 

  17. N. Boudeau, D. Liksonov, T. Barriere et al., Composite Based on Polyetheretherketone Reinforced with Carbon Fibres, an Alternative to Conventional Materials for Femoral Implant: Manufacturing Process and Resulting Structural Behavior, Mater. Des., 2012, 40, p 148–156.

    Article  CAS  Google Scholar 

  18. M. Sharma, J. Bijwe, E. Mader et al., Strengthening of CF/PEEK Interface to Improve the Tribological Performance in Low Amplitude Oscillating Wear Mode, Wear, 2013, 301(1–2), p 735–739.

    Article  CAS  Google Scholar 

  19. C.J. Laux, S.M. Hodel, M. Farshad et al., Carbon Fibre/Polyether Ether Ketone (CF/PEEK) Implants in Orthopaedic Oncology, World. J. Surg. Oncol., 2018, 16(1), p 241–246.

    Article  Google Scholar 

  20. M.S. Kumar, K. Raghavendra, M.A. Venkataswamy et al., Effect of Span Length on Micromechanics of Fracture Under Flexure Load in CFRP Composites, Mech. Adv. Mater. Struct., 2017, 25(9), p 756–765.

    Article  Google Scholar 

  21. D.H. Liu, M.J. Tang and J.H. Yan, Comparative Study of the Tensile Properties of 2D and UD Over-Braided Multilayer Composites, Compos. Sci. Technol., 2021, 210, p 108817. https://doi.org/10.1016/j.compscitech.2021.108817

    Article  Google Scholar 

  22. B. Chen, J.Z. Wang and F.Y. Yan, Comparative Investigation on the Tribological Behaviors of CF/PEEK Composites Under Sea Water Lubrication, Tribol. Int., 2019, 52, p 170–177.

    Article  Google Scholar 

  23. T. **ao, D.S. Wen, S.R. Wang et al., Investigation on Fretting Wear of Al-Li Alloy, Ind. Lubr. Tribol., 2020, 72(7), p 913–921.

    Article  Google Scholar 

  24. R.E. Stanford, A.H. Loefler, P.M. Stanford et al., Multiaxial Pedicle Screw Designs: Static and Dynamic Mechanical Testing, Spine, 2004, 29(4), p p367-375.

    Article  Google Scholar 

  25. X.Q. Pei, L.Y. Lin, A.K. Schlarb et al., Correlation of Friction and Wear Across Length Scales for PEEK Sliding Against Steel, Tribol. Int., 2019, 136, p 462–468.

    Article  CAS  Google Scholar 

  26. M. Sharma, M.I. Rao and J. Bijwe, Influence of Fiber Orientation on Abrasive Wear of Unidirectionally Reinforced Carbon Fiber–Polyetherimide Composites, Tribol. Int., 2010, 43, p 959–964.

    Article  CAS  Google Scholar 

  27. J. Li, K.F. Zhang and P. Liu, Tribological Behavior and Microstructure of Carbon Fiber– Reinforced Polymer Against Ti6Al4V Alloy in Fretting Contact, Tribol. Trans., 2017, 61(2), p 256–268.

    Article  Google Scholar 

  28. Z. Rasheva, G. Zhang and T. Burkhart, A Correlation Between the Tribological and Mechanical Properties of Short Carbon Fibers Reinforced PEEK Materials with Different Fiber Orientations, Tribol. Int., 2010, 43, p 1430–1437.

    Article  CAS  Google Scholar 

  29. L. Rodríguez-Tembleque and M.H. Aliabadi, Numerical Simulation of Fretting Wear in Fiber-Reinforced Composite Materials, Eng. Fract. Mech., 2016, 168, p 13–27.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 51872122), Major Basic Research Projects of Shandong Natural Science Foundation (ZR2020ZD06), the Independent Innovation Team Funding in **an (No. 2019GXRC012), Key projects of Shandong Natural Science Foundation (ZR2020KE062) and Taishan Scholar Engineering Special Funding (No. ts201511040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouren Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, C., Wang, S., Zhang, M. et al. Fretting Characterization of Carbon-Fiber-Reinforced Polyetheretherketone Composites with Different Fiber Orientations. J. of Materi Eng and Perform 31, 4655–4667 (2022). https://doi.org/10.1007/s11665-022-06590-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06590-1

Keywords

Navigation