Log in

Machining of Hard-to-Cut Materials: Impact of Varying Weight Proportion of Boron Carbide Particle Addition on Cutting Force and Surface Roughness of Al6061

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The current work mainly focused on evaluating the impact of machinability parameters on the roughness of the surface and components of the cutting force. The tests were carried out on the base alloy (Al6061) and composite (Al6061-B4C) reinforced with different weight percentages (5-9 wt.%) of boron carbide particles (37 µm). The ready specimen was assigned to turning process by using a traditional lathe machine with the assistance of polycrystalline diamond (PCD) tool to examine the impact of varying the weight percentage of boron carbide addition on surface roughness and cutting forces. Obtained outcomes show that the components of cutting force reduce with increment in the weight percentage of boron carbide particle strengthening, which can be related primarily to increased porosity, stiffness and density dislocations. Electron microscopy picture produced from a composite with a small weight percentage (5 wt.%) of boron carbide particulates, which is machined at a superior cutting speed and a superior depth of cut, evidently confirms the existence of built-up edge at the edge of the PCD tool. In addition, cutting forces advance with increment in the depth of cut and feed rate for Al6061 alloy matrix and Al6061 strengthened with boron carbide composites. It is identified that the quality of the surface is drastically enhanced by improving cutting speed and decreasing depth of cut and feed rate. Further, influence of 8, 37 and 88 micron B4C particle size and reinforcement wt.% on relative machinability index was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N. Anandan and M. Ramulu, Study of Machining Induced Surface Defects and its Effect on Fatigue Performance of AZ91/15%SiCp Metal Matrix Composite, J. Mag. Alloy, 2020, 8(2), p 387.

    Article  CAS  Google Scholar 

  2. Q. Wu, W. Xu and L. Zhang, Advanced Machining and Finishing, 45-75 (2021).

  3. U.B. Gopal Krishna, B. Vasudeva, V. Auradi and M. Nagaral, Effect of Percentage Variation on Wear Behaviour of Tungsten Carbide and Cobalt Reinforced Al7075 Matrix Composites Synthesized by Melt Stirring Method, J. Bio. Tri. Corr., 2021, 7(3), p 1–8.

    Google Scholar 

  4. S. Matti, B.P. Shivakumar, S. Shashidhar and M. Nagaral, Dry Sliding Wear Behavior of Mica, Fly Ash and Red Mud Particles Reinforced Al7075 Alloy Hybrid Metal Matrix Composites, Ind. J. Sci. Tech., 2021, 14(4), p 310–318.

    Article  CAS  Google Scholar 

  5. N. Fazil, V. Venkataraman and M. Nagaral, Mechanical Characterization and Wear Behavior of Aerospace Alloy AA2124 and Micro B4C Reinforced Metal Composites, J. Met. Mater. Miner., 2021, 30(4), p 97–105.

    Google Scholar 

  6. Wu. Qi, Xu. Weixing and L. Zhang, Machining of Particulate-Reinforced Metal Matrix Composites: An Investigation into the Chip Formation and Subsurface Damage, J. Mater. Proc. Tech., 2019, 274, 116315. https://doi.org/10.1016/j.jmatprotec.2019.116315

    Article  CAS  Google Scholar 

  7. G.P. Prasad, H.C. Chittappa, M. Nagaral and V. Auradi, Influence of B4C Reinforcement Particles with Varying Sizes on the Tensile Failure and Fractography of LM29 Alloy Composites, J. Fail. Anal. Prev., 2020, 20(6), p 2078–2086. https://doi.org/10.1007/s11668-020-01021-6

    Article  Google Scholar 

  8. Y. Pachuary and Y.C. Shin, Assessment of Sub-Surface Damage During Machining of Additively Manufactured Fe-TiC Metal Matrix Composites, J. Mater. Proc. Tech., 2019, 266, p 173–183. https://doi.org/10.1016/j.jmatprotec.2018.11.001

    Article  CAS  Google Scholar 

  9. A. Pramanik, L.C. Zhang and J.A. Arsecularatne, Micro-Indentation of Metal Matrix Composite - An FEM Investigation, Key Eng. Mater., 2007, 340–341, p 563–570. https://doi.org/10.4028/www.scientific.net/KEM.340-341.563

    Article  Google Scholar 

  10. E. Salur, A. Aslan, M. Kuntoglu, A. Gunes and O.S. Sahin, Experimental Study and Analysis of Machinability Characteristics of Metal Matrix Composites during Drilling, Comp. Part B: Eng., 2019, 166, p 401–413. https://doi.org/10.1016/j.compositesb.2019.02.023

    Article  Google Scholar 

  11. M. El-Gallab and M. Sklad, Machining of Al/SiCp Metal Matrix Composites, Part 1. Tool performance, J. Mater. Process. Technol., 1998, 83, p 151–158.

    Article  Google Scholar 

  12. X. Ding, W.Y.H. Liew and X.D. Liu, Evaluation of Machining Performance of MMC with PCBN and PCD Tools, Wear, 2005, 259, p 1225–1234. https://doi.org/10.1016/j.wear.2005.02.094

    Article  CAS  Google Scholar 

  13. T. Lu, T. He, Z. Li, H. Chen, X. Han, Z. Fu and W. Chen, Microstructure, Mechanical Properties and Machinability of Particulate Reinforced Al Matrix Composites: A Comparative Study between SiC Particles and High-Entropy Alloy Particles, J. Mater. Res. Tech., 2020, 9(6), p 13646–13660. https://doi.org/10.1016/j.jmrt.2020.09.034

    Article  CAS  Google Scholar 

  14. M. Nagaral, V. Auradi, S.A. Kori and V. Hiremath, Investigations on Mechanical and Wear Behavior of Nano Al2O3 Particulates Reinforced AA7475 Alloy Composites, J. Mech. Eng. Sci., 2019, 13(1), p 4623–4635. https://doi.org/10.15282/jmes.13.1.2019.19.0389

    Article  CAS  Google Scholar 

  15. M.O. Shabani and A. Mazahery, Computational Modeling of cast Aluminum 2024 Alloy Matrix Composites: Adapting the Classical Algorithms for Optimal Results in Finding Multiple Optima, Powder Technol., 2013, 249, p 77–81.

    Article  CAS  Google Scholar 

  16. A.A. Tofigh and M.O. Shabani, Efficient Optimum Solution for High Strength Al Alloys Matrix Composites, Ceram. Int., 2013, 39, p 7483–7490. https://doi.org/10.1016/j.ceramint.2013.02.097

    Article  CAS  Google Scholar 

  17. A. Mazahery and M.O. Shabani, Existence of Good Bonding between Coated B4C Reinforcement and Al Matrix via Semisolid Techniques: Enhancement of Wear Resistance and Mechanical Properties, Tribol. Trans., 2013, 56, p 342–348. https://doi.org/10.1080/10402004.2012.752552

    Article  CAS  Google Scholar 

  18. M.O. Shabani and A. Mazahery, Good Bonding Between Coated B4C Particles and Aluminum Matrix Fabricated by Semisolid Techniques, Russ. J. Non-Ferrous Metals, 2013, 54, p 154–160. https://doi.org/10.3103/S1067821213020120

    Article  Google Scholar 

  19. A. Mazahery and M.O. Shabani, Sol–Gel Coated B4C Particles Reinforced 2024 Al Matrix Composites, Proc. IMechE Part L: J. Mater. Des. Appl., 2011, 226, p 159–169. https://doi.org/10.1177/1464420711428996

    Article  CAS  Google Scholar 

  20. J.M. Monaghan, The Use of Quick Stop Test to Study the Chip Formation of an SiC/Al Metal Matrix Composite and its Matrix Alloy, J. Process. Adv. Mater., 1994, 4, p 170–179.

    CAS  Google Scholar 

  21. M. Nagaral, P.H. Nayak, H.K. Srinivas and V. Auradi, Characterization of Tensile Fractography of Nano ZrO2 Reinforced Copper-Zinc Alloy Composites, Frattura Ed Integrita Strutturale, 2019, 13(48), p 370–376. https://doi.org/10.3221/IGF-ESIS.48.35

    Article  Google Scholar 

  22. M. Nagaral, V. Hiremath, V. Auradi and S.A. Kori, Influence of Two-Stage Stir Casting Process on Mechanical Characterization and Wear Behavior of AA2014-ZrO2 Nanocomposites, Trans. Ind. Inst. Met., 2018, 71, p 2845–2850.

    Article  CAS  Google Scholar 

  23. Shyam, M.S. Srinivas, K.K. Gajrani and M.R. Sankar, Sustainable Machining of Cf/SiC Ceramic Matrix Composite Using Green Cutting Fluids, Proc. CIRP, 2021, 98, p 151–156. https://doi.org/10.1016/j.procir.2021.01.021

    Article  Google Scholar 

  24. A. Manna and B. Bhattacharya, Influence of Machining Parameters on the Machinability of Particulate Reinforced Al/SiC–MMC, Int. J. Adv. Manuf. Technol., 2005, 25, p 850–856. https://doi.org/10.1007/s00170-003-1917-2

    Article  Google Scholar 

  25. I. Ciftci, M. Turker and U. Seker, Evaluation of Tool Wear When Machining SiCp-Reinforced Al-2014 Alloy Matrix Composites, Mater. Design, 2004, 25, p 251–255.

    Article  CAS  Google Scholar 

  26. A.R. Chambers, The Machinability of Light Alloy MMCs, Compos. A, 1996, 27A, p 143–147.

    Article  CAS  Google Scholar 

  27. H. Hoecheng, S.B. Yen, T. Ishihara and B.K. Yen, Fundamental Turning Characteristics of Tribology Favored Graphite/Aluminium Alloy Composites, Compos. A, 1997, 28A, p 813–818.

    Google Scholar 

  28. Z.J. Yuan and G.S. Dong, Ultraprecision Machining of SiCw/Al Composites, CIRP Annal, 1993, 42, p 107–109. https://doi.org/10.1016/S0007-8506(07)62403-2

    Article  Google Scholar 

  29. V. Bharath, V. Auradi, M. Nagaral and S.B. Bopanna, Influence of Alumina Percentage on Microstructure, Mechanical and Wear Behaviour of 2014 Aluminium-Alumina Metal Matrix Composites, J. Trib., 2020, 25(1), p 29–44.

    Google Scholar 

  30. N. Tomac, T. Tonnessen and F.O. Rasch, Machinability of Particulate Aluminium Matrix Composites, Annal. CIRP, 1992, 41, p 55–58.

    Article  Google Scholar 

  31. A. Kumar, M.M. Mahapatra and P.K. Jha, Effect of Machining Parameters on Cutting Force and Surface Roughness of In Situ Al–4.5%Cu/TiC Metal Matrix Composites, Measurement, 2014, 48, p 325–332. https://doi.org/10.1016/j.measurement.2013.11.026

    Article  Google Scholar 

  32. A. Pramanik, L.C. Zhang and J.A. Arsecularatne, Prediction of Cutting Forces in Machining of Metal Matrix Composites, Int. J. Mach. Tools Manuf., 2006, 46, p 1795–1803.

    Article  Google Scholar 

  33. N.G. Siddesh Kumar, G.S. Shiva Shankar, S. Basvarajappa and R. Suresh, Some Studies on Mechanical and Machining Characteristics of Al2219/n-B4C/MoS2 Nano-Hybrid Metal Matrix Composites, Measurement, 2017, 107, p 1–11. https://doi.org/10.1016/j.measurement.2017.05.003

    Article  Google Scholar 

  34. V. Bharath, V. Auradi, M. Nagaral and S.B. Bopanna, Experimental Investigations on Mechanical and Wear Behaviour of 2014Al–Al2O3 Composites, J. Bio. Tri. Corr., 2020, 6(2), p 1–10.

    Google Scholar 

  35. M. El-Gallab and M. Sklad, Machining of Al/SiC Particulate Metal Matrix Composites: Part II: Workpiece Surface Integrity, J. Mater. Process. Technol., 1998, 83, p 277–286. https://doi.org/10.1016/S0924-0136(98)00072-7

    Article  Google Scholar 

  36. N.S.K. Reddy, S. Kwan-Sup and M. Yang, Experimental Study of Surface Integrity during End Milling of Al/SiC Particulate Metal–Matrix Composites, J. Mater. Process. Technol., 2008, 201, p 574–579. https://doi.org/10.1016/j.jmatprotec.2007.11.280

    Article  CAS  Google Scholar 

  37. J.T. Lin, D. Bhattacharya and W.G. Ferguson, Chip Formation in the Machining of SiC Particle Reinforced Aluminium Matrix Composites, Compos. Sci. Technol., 1998, 58, p 285–291. https://doi.org/10.1016/S0266-3538(97)00126-7

    Article  Google Scholar 

  38. T. Ozben, E. Kilickap and O. Cakir, Investigation of Mechanical and Machinability Properties of SiC Particle Reinforced Al-MMC, J. Mater. Process. Technol., 2008, 198(1–3), p 220–225. https://doi.org/10.1016/j.jmatprotec.2007.06.082

    Article  CAS  Google Scholar 

  39. J.P. Davim, Design of Optimisation of Cutting Parameters for Turning Metal Matrix Composites Based on the Orthogonal Arrays, J. Mater. Process. Technol., 2003, 132, p 340–344. https://doi.org/10.1016/S0924-0136(02)00946-9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madeva Nagaral.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiremath, V., Bharath, V., Auradi, V. et al. Machining of Hard-to-Cut Materials: Impact of Varying Weight Proportion of Boron Carbide Particle Addition on Cutting Force and Surface Roughness of Al6061. J. of Materi Eng and Perform 31, 3784–3791 (2022). https://doi.org/10.1007/s11665-021-06480-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06480-y

Keywords

Navigation