Log in

Parameter Optimization of Powder Metallurgy Material Impregnated with Diamond Nanoparticle Suspension

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

An iron-matrix powder metallurgy composite with diamond nanoparticle suspension was synthesized to improve the tribological performance of hydraulic components. Based on the theory of suspension flow, filtration and material properties, a mathematical model for predicting the seepage mechanism was established, which was validated by experiments. Furthermore, effects of inlet concentration of diamond nanoparticles and porosity on the seepage characteristics were investigated and results demonstrated that these two parameters have an important effect on the seepage time and total weight gain of diamond nanoparticles. The optimum region of inlet concentration and initial porosity was obtained under different inlet pressure, which is important to select parameters in the design of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. D. Wu, Y. Liu, D. Li, X. Zhao and X. Ren, The Applicability of WC–10Co–4Cr/Si3N4 Tribopair to the Different Natural Waters, Int. J. Refract. Met. Hard Mater., 2016, 54, p 19–26.

    Article  CAS  Google Scholar 

  2. S. Nie, F. Lou, H. Ji and F. Yin, Tribological Performance of CF-PEEK Sliding against 17–4PH Stainless Steel with Various Cermet Coatings for Water Hydraulic Piston Pump Application, Coatings, 2019, 9, p 436.

    Article  CAS  Google Scholar 

  3. S. Nie, Z. Li and S. Yang, Investigation of Valve Plate in Water Hydraulic Axial Piston Motor, J. Shanghai Univ., 2002, 6, p 73–78.

    Article  Google Scholar 

  4. X. Gao, H. Yue, E. Guo et al., Preparation and Tribological Properties of Homogeneously Dispersed Graphene-Reinforced Aluminium Matrix Composites, Mater. Sci. Tech., 2018, 34, p 1316–1322.

    Article  CAS  Google Scholar 

  5. K. Halil, O. Smail, S. Dündar and T. Ramazan, Wear and Mechanical Properties of Al6061/SiC/B4C Hybrid Composites Produced with Powder Metallurgy, J Mater. Res. Technol., 2019, 8, p 5348–5361.

    Article  CAS  Google Scholar 

  6. Y. Liu, S. Mateti, C. Li and X. Liu, Synthesis of Composite Nanosheets of Graphene and Boron Nitride and Their Lubrication Application in Oil, Adv. Eng. Mater., 2018, 20, p 1700488.

    Article  Google Scholar 

  7. S.T. Kim, J.Y. Woo and Y.Z. Lee, Friction, Wear, and Scuffing Characteristics of Marine Engine Lubricants with Nanodiamond Particles, Tribol. Trans., 2016, 59, p 1098–1103.

    Article  CAS  Google Scholar 

  8. O. Elomaa, J. Oksanen, T.J. Hakala, O. Shenderova and J. Koskinen, A Comparison of Tribological Properties of Evenly Distributed and Agglomerated Diamond Nanoparticles in Lubricated High-Load Steel–Steel Contact, Tribol. Int., 2014, 71, p 62–68.

    Article  CAS  Google Scholar 

  9. T. Xu, J. Zhao and K. Xu, The Ball-Bearing Effect of Diamond Nanoparticles as an Oil Additive, J. Phys. D Appl. Phys., 1996, 29, p 2932–2937.

    Article  Google Scholar 

  10. M.S. Abd-Elwahed, A.F. Ibrahim and M.M. Reda, Effects of ZrO2 Nanoparticle Content on Microstructure and Wear Behavior of Titanium Matrix Composite, J Mater. Res. Technol., 2020, 9, p 8528–8534.

    Article  CAS  Google Scholar 

  11. B. Chen and T.W. Chou, Compaction of Woven-Fabric Preforms in Liquid Composite Molding Processes: Single-Layer Deformation, Compos. Sci. Technol., 1999, 59, p 1519–1526.

    Article  Google Scholar 

  12. D. Lefevre, S. Comas-Cardona, C. Binétruy and P. Krawczak, Modelling the Flow of Particle-Filled Resin Through a Fibrous Preform in Liquid Composite Molding Technologies, Compos. A, 2007, 38, p 2154–2163.

    Article  Google Scholar 

  13. C. Steggall-Murphy, P. Simacek, S.G. Advani, S. Yarlagadda and S. Walsh, A Model for Thermoplastic Melt Impregnation of Fiber Bundles during Consolidation of Powder-Impregnated Continuous Fiber Composites, Compos. A, 2010, 41, p 93–100.

    Article  Google Scholar 

  14. D. Lefevre, S. Comas-Cardona, C. Binetruy and P. Krawczak, Coupling Filtration and Flow during Liquid Composite Molding: Experimental Investigation and Simulation, Compos. Sci. Technol., 2009, 69, p 2127–2134.

    Article  CAS  Google Scholar 

  15. H. Haji, A. Saouab and Y. Nawab, Simulation of Coupling Filtration and Flow in a Dual Scale Fibrous Media, Compos. A, 2015, 76, p 272–280.

    Article  CAS  Google Scholar 

  16. J. Lux, E.G. de Moraes, E. Maire, J. Adrien and L. Biasetto, Gas Permeability of Ti6Al4V Foams Prepared via Gelcasting, Experiments and Modelling, Comput. Mater. Sci., 2018, 152, p 363–373.

    Article  CAS  Google Scholar 

  17. M.I. Khan, F. Alzahrani and A. Hobiny, Simulation and Modeling of Second Order Velocity Slip Flow of Micropolar Ferrofluid with Darcy-Forchheimer Porous Medium, J. Mater. Res. Technol., 2020, 9, p 7335–7340.

    Article  CAS  Google Scholar 

  18. E.F.R. Da Costa and A.A. Skordos, Modelling Flow and Filtration in Liquid Composite Moulding of Nanoparticle Loaded Thermosets, Compos. Sci. Technol., 2012, 72, p 799–805.

    Article  Google Scholar 

  19. S.M. Hosseini and T. Tosco, Transport and Retention of High Concentrated Nano-Fe/Cu Particles Through Highly Flow-rated Packed Sand Column, Water Res., 2013, 47, p 326–338.

    Article  CAS  Google Scholar 

  20. A. Tiraferri, T. Tosco and R. Sethi, Transport and Retention of Microparticles in Packed Sand Columns at Low and Intermediate Ionic Strengths: Experiments and Mathematical Modeling, Environ. Earth Sci., 2011, 63, p 847–859.

    Article  Google Scholar 

  21. M. Corcione, A Semi-Empirical Model for Predicting the Effective Dynamic Viscosity of Nanoparticle Suspensions, Heat Transfer Eng., 2012, 33, p 575–583.

    Article  CAS  Google Scholar 

  22. T. Tosco and R. Sethi, Transport of Non-Newtonian Suspensions of Highly Concentrated Micro-and Nanoscale Iron Particles in Porous Media: A Modeling Approach, Environ. Sci. Technol., 2010, 44, p 9062–9068.

    Article  CAS  Google Scholar 

  23. H. Liu, X. Luo, W. Shi, J, Guo, Simulation of the seepage properties of grease containing Nano-C60 in the albronze powder metallurgy, Fluid Power and Mechatronics, 7th 2015, p 1108.

  24. C. Vincent, J.F. Silvain, J.M. Heintz and N. Chandra, Effect of Porosity on the Thermal Conductivity of Copper Processed by Powder Metallurgy, J. Phys. Chem. Solids, 2012, 73, p 499–504.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the project ZR2019BEE032 supported by Shandong Provincial Natural Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijie Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Shi, W., Zhang, T. et al. Parameter Optimization of Powder Metallurgy Material Impregnated with Diamond Nanoparticle Suspension. J. of Materi Eng and Perform 31, 2955–2966 (2022). https://doi.org/10.1007/s11665-021-06394-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06394-9

Keywords

Navigation