Log in

Hot Processing Maps and Microstructural Characteristics of A357 Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, the hot deformation behavior of A357 alloy was investigated by hot compression tests. Isothermal hot compression simulation tests for A357 alloy were carried out at the conditions of deformation temperature of 350-470 °C, strain rate of 0.001-10 s−1 and engineering strain of 50%. Based on the Prasad instability criterion and dynamic material model, the hot processing maps of A357 alloy were constructed. The microstructure of compressed samples at different areas of the hot processing map was characterized by metallographic and scanning electron microscope and transmission electron microscope. The experimental results showed that the unstable processing zone of A357 alloy was mainly distributed in the high strain rate (10 s−1) and low-temperature (350, 380 °C) region. With an increase in the strain, the unstable zone expanded from low temperature to high temperature (470 °C). The ideal deformation conditions were deformation temperatures of 380-410 °C and strain rates of 0.001-0.01 s−1, and deformation temperatures of 440-470 °C and strain rates of 0.01-1 s−1. When the A357 alloy was extruded with the optimal hot processing parameters, the results suggested that hot extrusion could make the microstructure uniform and fine, thereby improving mechanical properties, especially when the elongation was up to 19.5% higher than the as-cast A357 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N.D. Alexopoulos and G. Pantelakis Sp, Quality Evaluation of A357 Cast Aluminum Alloy Specimens Subjected to Different Artificial Aging Treatment, Mater. Des., 2004, 25(5), p 419–430

    Article  CAS  Google Scholar 

  2. O.S. Es-Said, D. Lee, W.D. Pfost, D.L. Thompson, M. Patterson, J. Foyos, and R. Marloth, Alternative Heat Treatments for A357-T6 Aluminum Alloy, Eng. Fail. Anal., 2002, 9(1), p 99–107

    Article  CAS  Google Scholar 

  3. Z.W. Chen, P. Chen, and L. Fan, Effects of Melt Treatment on Dendrite Coherency of A357 Alloy, Adv. Mater. Res., 2011, 189-193, p 3886–3890

    Article  Google Scholar 

  4. P.Y. Li, J. Jia, J.J. Guo, P.J. Li, and G.L. Shao, Effect of Melt Superheating on Microstructure and Mechanical Properties of A357 Alloy, T. Nonferr. Metal Soc., 1997, 7(3), p 94–98

    CAS  Google Scholar 

  5. M. Mostafaei, M. Ghobadi, G.B. Eisaabadi, M. Uludağ, and M. Tiryakioğlu, Evaluation of the Effects Of Rotary Degassing Processing Variables on the Quality of A357 Aluminum Alloy Castings, Metall. Mater. Trans. B, 2016, 47(6), p 3469–3475

    Article  CAS  Google Scholar 

  6. K.N. Prabhu and P. Hemanna, Heat Transfer During Quenching of Modified and Unmodified Gravity Die-Cast A357 Cylindrical Bars, J. Mater. Eng. Perform., 2006, 15(3), p 311–315

    Article  CAS  Google Scholar 

  7. Y.Z. Zou, Z.B. Xu, and J.M. Zeng, Effects of Secondary Dendrite Arm Spacing on Microporosity of A357 Alloy, Adv. Mater. Res., 2010, 97-101, p 781–784

    Article  Google Scholar 

  8. J.W. Yeh and W.P. Liu, Cracking Mechanisms of Silicon Particles in an A357 Aluminum Alloy, Metall. Mater. Trans. A, 1996, 27(11), p 3558–3568

    Article  Google Scholar 

  9. Y.C. Tzeng, V.S. Chengn, J.K. Nieh, H.Y. Bor, and S.L. Lee, Microstructure and Thermal Stability of A357 Alloy with and Without the Addition of Zr, J. Mater. Eng. Perform., 2017, 26(11), p 5511–5518

    Article  CAS  Google Scholar 

  10. A. Saboori, M. Pavese, C. Badini, and A.R. Eivani, Studying the Age Hardening Kinetics of A357 Aluminum Alloys Through the Johnson-Mehl-Avrami Theory, Met. Powder Rep., 2017, 72(6), p 420–424

    Article  Google Scholar 

  11. A. Bloyce and J.C. Summers, Static and Dynamic Properties of Squeeze-Cast A357-SiC Particulate Duralcan Metal Matrix Composite, Mater. Sci. Eng., A, 1991, 135(1-2), p 231–236

    Article  Google Scholar 

  12. S. Dezecot and M. Brochu, Microstructural Characterization and High Cycle Fatigue Behavior of Investment Cast A357 Aluminum Alloy, Int. J. Fatigue, 2015, 77, p 154–159

    Article  CAS  Google Scholar 

  13. W. Chen, Y.P. Guan, and Z.H. Wang, Hot Deformation Behavior of High Ti 6061 Al Alloy, T Nonferr. Metal Soc., 2016, 26(2), p 369–377

    Article  CAS  Google Scholar 

  14. J. Peng, Y.J. Wang, L.P. Zhong, L.F. Peng, and F.S. Pan, Hot Deformation Behavior of Homogenized Al-32 Mg-04Er Aluminum Alloy, T Nonferr. Metal. Soc., 2016, 26(4), p 945–955

    Article  CAS  Google Scholar 

  15. Q.G. Wang, Plastic Deformation Behavior of Aluminum Casting Alloys A356/357, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2004, 35A(9), p 2707–2718

    Article  CAS  Google Scholar 

  16. X.W. Yang, Z.H. Lai, J.C. Zhu, Y. Liu, and D. He, Hot Compressive Deformation Behavior of the As-Quenched A357 Aluminum Alloy, Mater. Sci. Eng., B, 2012, 177(19), p 1721–1725

    Article  CAS  Google Scholar 

  17. M. Haghshenas, A. Zareihanzaki, and M. Jahazi, An Investigation to the Effect of Deformation-Heat Treatment Cycle on the Eutectic Morphology and Mechanical Properties of a Thixocast A356 Alloy, Mater. Charact., 2009, 60(8), p 817–823

    Article  CAS  Google Scholar 

  18. A. Abbasi-Bani, A. Zarei-Hanzaki, M.H. Pishbin, and N. Haghdadi, A Comparative Study on the Capability of Johnson-Cook and Arrhenius-Type Constitutive Equations to Describe the Flow Behavior of Mg-6Al-1Zn Alloy, Mech. Mater., 2014, 71, p 52–61

    Article  Google Scholar 

  19. A. Yanagida and J. Yanagimoto, A Novel Approach to Determine the Kinetics for Dynamic Recrystallization by Using the Flow Curve, J. Mater. Process. Tech., 2004, 151(1-3), p 33–38

    Article  CAS  Google Scholar 

  20. Y. Prasad and S. Sasidhara, Hot Working Guide: A Compendium of Processing Maps, ASM International, Materials Park, 1997, p 25–177

    Google Scholar 

  21. Y. Prasad, H.L. Gegel, and S.M. Doraivelu, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, Metall. Trans. A, 1984, 15(10), p 1883–1892

    Article  Google Scholar 

  22. H. Mirzadeh, A. Najafizadeh, and M. Moazeny, Flow Curve Analysis of 17-4 PH Stainless Steel Under Hot Compression Test, Metall. Mater. Trans. A, 2009, 40(12), p 2950–2958

    Article  Google Scholar 

  23. T.K. Ha, W.J. Park, S.G. Ahn, and Y.W. Chang, Fabrication of Spray-Formed Hypereutectic Al-25Si Alloy and its Deformation Behavior, J. Mater. Process. Tech., 2002, 130, p 691–695

    Article  Google Scholar 

  24. H.Z. Wang, K. Zhang, X.G. Li, and Y.J. Li, Effects of Homogenization on Hot Deformation Behaviors of AZ80 Magnesium Alloys with Processing Map, T. Nonferr. Metal Soc., 2010, 20(9), p 1671–1679

    CAS  Google Scholar 

  25. H.Z. Zhao, L. **ao, P. Ge, J. Sun, and Z.P. **, Hot Deformation Behavior and Processing Maps of Ti-1300 Alloy, Mater. Sci. Eng., A, 2014, 604, p 111–116

    Article  CAS  Google Scholar 

  26. J.Z. Xu, X.J. Gao, Z.Y. Jiang, and D.B. Wei, A Comparison of Hot Deformation Behavior of High-Cr-White Cast Iron and High-Cr White Cast Iron/Low Carbon Steel Laminate, Steel Res. Int., 2016, 87(6), p 780–788

    Article  CAS  Google Scholar 

  27. F.W. Kang, J.F. Sun, G.Q. Zhang, Z. Li, and J. Shen, Characteristics of Hot Compression Deformation and Microstructure Evolution of Spray Formed Nickel Base Superalloy, Acta. Metall. Sinica., 2007, 43(10), p 1053–1058

    CAS  Google Scholar 

  28. X. Yang and W. Li, Flow Behavior and Processing Maps of A Low-Carbon Steel During Hot Deformation[J], Metall. Mater. Trans. A, 2015, 46(12), p 6052–6064

    Article  CAS  Google Scholar 

  29. B.L. **ao, J.Z. Fan, and X.F. Tian, Hot deformation and processing map of 15%SiCp/2009 Al composite, J. Mater. Sci., 2005, 40, p 5757–5762

    Article  CAS  Google Scholar 

  30. B.L. **ao, J.Z. Fan, X.F. Tian et al., Hot Deformation and Processing Map of 15% SiC p/2009 Al Composite, J. Mater. Sci., 2005, 40(21), p 5757–5762

    Article  CAS  Google Scholar 

  31. R.K.W. Marceau, G. Sha, and R.N. Lumley, Evolution of Solute Clustering in Al-Cu-Mg Alloys During Secondary Ageing, Acta Mater., 2010, 58(5), p 1795–1805

    Article  CAS  Google Scholar 

  32. N. Chobaut, D. Carron, and J.M. Drezet, Characterisation of Precipitation Upon Cooling of an AA2618 Al-Cu-Mg Alloy, J. Alloys Compd., 2016, 654, p 56–62

    Article  CAS  Google Scholar 

  33. Y. Prasad and T. Seshacharyulu, Modelling of hot deformation for microstructural control, Int. Meter. Rev., 1998, 43(6), p 243–258

    Article  CAS  Google Scholar 

  34. G. Ganesan, K. Raghukandan, and R. Karthikeyan, Development of Processing Maps for 6061 Al/15% SiCp Composite Material, Mater. Sci. Eng., A, 2014, 369(1), p 230–235

    Google Scholar 

  35. S. Banerjee, P.S. Robi, and A. Srinivasan, Deformation Processing Maps for Control of Microstructure in Al-Cu-Mg Alloys Microalloyed with Sn, Metall. Mater. Trans. A, 2012, 43(10), p 3834–3849

    Article  CAS  Google Scholar 

  36. A.K. Maheshwari, Prediction of flow Stress for Hot Deformation Processing, Comp. Mater. Sci., 2013, 69, p 350–358

    Article  CAS  Google Scholar 

  37. M. Haghshenas, A. Zarei-Hanzaki, S.M. Fatemi-Varzaneh, and H. Abedi, Hot Deformation Behaviour of Thixocast A356 Aluminum Alloy During Compression at Elevated Temperature, Int. J. Mater. Form., 2008, 1(1), p 1001–1005

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (Grant No. 51901058)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enhao Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, F., Wei, S., Zhang, J. et al. Hot Processing Maps and Microstructural Characteristics of A357 Alloy. J. of Materi Eng and Perform 29, 7352–7360 (2020). https://doi.org/10.1007/s11665-020-05210-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05210-0

Keywords

Navigation