Log in

Hot Deformation Behavior of a High-Mn Austenitic Steel for Cryogenic Liquified Natural Gas Applications

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Hot deformation behavior of a high-Mn austenitic steel was investigated employing hot compression tests at different temperatures and strain rates. The flow behavior related to deformation temperature and strain rate was analyzed. Microstructures and grain boundary characteristics of the deformed specimens quenched at selected conditions were examined using SEM-EBSD. It was observed that the flow stress and critical characteristic parameters were sensitive to deformation temperature and strain rate. Grain boundary bulging was the main nucleation mechanism which signified discontinuous dynamic recrystallization played a vital role in microstructure evolution. Strain rate had a complex influence on DRX kinetics and the formation of Σ3 boundaries. At high strain rates, the higher stored energy and adiabatic temperature rise induced the boundary to migrate at a higher velocity, thus accelerating the nucleation of DRX grains and increasing the frequency of twinning. At low strain rates, longer time was available for grain boundary migration which facilitated the growth of DRX grains and the nucleation of annealing twins. However, at intermediate strain rates, sluggish recrystallization kinetics and annealing twins evolution were observed as the stored energy was not sufficiently high and the time available for grain boundary migration was also fairly short.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. S. Kumar, H.T. Kwon, K.H. Choi, J.H. Cho, W. Lim, and I. Moon, Current Status and Future Projections of LNG Demand and Supplies: A Global Prospective, Energy Policy, 2011, 39, p 4097–4104

    Google Scholar 

  2. K. Han, J. Yoo, B. Lee, I. Han, and C. Lee, Effect of Ni on the Hot Ductility and Hot Cracking Susceptibility of High Mn Austenitic Cast Steel, Mater. Sci. Eng. A, 2014, 618, p 295–304

    CAS  Google Scholar 

  3. S.S. Sohn, S. Hong, J. Lee, B.C. Suh, S.K. Kim, B.J. Lee, N.J. Kim, and S. Lee, Effects of Mn and Al Contents on Cryogenic-Temperature Tensile and Charpy Impact Properties in Four Austenitic High-Mn Steels, Acta Mater., 2015, 100, p 39–52

    CAS  Google Scholar 

  4. J. Lee, S.S. Sohn, S. Hong, B.C. Suh, S.K. Kim, B.J. Lee, N.J. Kim, and S. Lee, Effects of Mn Addition on Tensile and Charpy Impact Properties in Austenitic Fe-Mn-C-Al-Based Steels for Cryogenic Applications, Metall. Mater. Trans. A, 2014, 45, p 5419–5430

    CAS  Google Scholar 

  5. O.A. Zambrano, J. Valdés, Y. Aguilar, J.J. Coronado, S.A. Rodríguez, and R.E. Logé, Hot Deformation of a Fe-Mn-Al-C Steel Susceptible of κ-Carbide Precipitation, Mater. Sci. Eng. A, 2017, 689, p 269–285

    CAS  Google Scholar 

  6. X. Li, R.B. Song, T. Kang, and N.P. Zhou, Hot Deformation and Dynamic Recrystallization Behavior of Fe-8Mn-6Al-0.2C Steel, Mater. Sci. Forum, 2017, 898, p 797–802

    Google Scholar 

  7. Z. Wang, X.N. Wang, and Z.S. Zhu, Characterization of High-Temperature Deformation Behavior and Processing Map of TB17 Titanium Alloy, J. Alloys Compd., 2017, 692, p 149–154

    CAS  Google Scholar 

  8. L. Ou, Z.Q. Zheng, Y.F. Nie, and H.G. Jian, Hot Deformation Behavior of 2060 Alloy, J. Alloys Compd., 2015, 648, p 681–689

    CAS  Google Scholar 

  9. N. Nayan, S.V.S.N. Murty, S. Chhangani, A. Prakash, M.J.N.V. Prasad, and I. Samajdar, Effect of Temperature and Strain Rate on Hot Deformation Behavior and Microstructure of Al-Cu-Li Alloy, J. Alloys Compd., 2017, 723, p 548–558

    CAS  Google Scholar 

  10. K.A. Babu, S. Mandal, C.N. Athreya, B. Shakthipriya, and V.S. Sarma, Hot Deformation Characteristics and Processing Map of a Phosphorous Modified Super Austenitic Stainless Steel, Mater. Des., 2017, 115, p 262–275

    CAS  Google Scholar 

  11. S. Mandal, A.K. Bhaduri, and V.S. Sarma, Influence of State of Stress on Dynamic Recrystallization in a Titanium-Modified Austenitic Stainless Steel, Metall. Mater. Trans. A, 2012, 43, p 410–414

    CAS  Google Scholar 

  12. D. Samantaray, S. Mandal, M. Jayalakshmi, C.N. Athreya, A.K. Bhaduri, and V.S. Sarma, New Insights into the Relationship Between Dynamic Softening Phenomena and Efficiency of Hot Working Domains of a Nitrogen Enhanced 316L(N) Stainless Steel, Mater. Sci. Eng. A, 2014, 598, p 368–375

    CAS  Google Scholar 

  13. Y.V.R.K. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43, p 243–258

    CAS  Google Scholar 

  14. D.J. Li, Y.R. Feng, Z.F. Yin, F.S. Shangguan, K. Wang, Q. Liu, and F. Hu, Prediction of Hot Deformation Behaviour of Fe–25Mn–3Si–3Al TWIP Steel, Mater. Sci. Eng. A, 2011, 528, p 8084–8089

    CAS  Google Scholar 

  15. A. Marandi, A. Zarei-Hanzaki, N. Haghdadi, and M. Eskandari, The Prediction of Hot Deformation Behavior in Fe-21Mn-25.Si-1.5Al Transformation-Twinning Induced Plasticity Steel, Mater. Sci. Eng. A, 2012, 554, p 72–78

    CAS  Google Scholar 

  16. B. Wietbrock, W. **ong, M. Bambach, and G. Hirt, Effect of Temperature, Strain Rate, Manganese and Carbon Content on Flow Behavior of Three Ternary Fe-Mn-C (Fe-Mn23-C0.3, Fe-Mn23-C0.6, Fe-Mn28-C0.3) High-Manganese Steels, Steel res. Int., 2011, 82, p 63–69

    CAS  Google Scholar 

  17. A.S. Hamada, L.P. Karjalainen, and M.C. Somani, The Influence of Aluminum on Hot Deformation Behavior and Tensile Properties of High-Mn TWIP Steels, Mater. Sci. Eng. A, 2007, 467, p 114–124

    Google Scholar 

  18. F. Reyes-Calderón, I. Mejía, A. Boulaajaj, and J.M. Cabrera, Effect of Microalloying Elements (Nb, V and Ti) on the Hot Flow Behavior of High-Mn Austenitic Twinning Induced Plasticity (TWIP) Steel, Mater. Sci. Eng. A, 2013, 560, p 552–560

    Google Scholar 

  19. I. Mejía, F. Reyes-Calderón, and J.M. Cabrera, Modeling the Hot Flow Behavior of a Fe-22Mn-0.41C-1.6Al-1.4Si TWIP Steel Microalloyed with Ti, V and Nb, Mater. Sci. Eng. A, 2015, 644, p 374–385

    Google Scholar 

  20. T. Sakai and J.J. Jonas, Overview no. 35 Dynamic Recrystallization: Mechanical and Microstructural Considerations, Acta Metall., 1984, 32, p 189–209

    CAS  Google Scholar 

  21. H.J. McQueen, Development of Dynamic Recrystallization Theory, Mater. Sci. Eng. A, 2004, 387–389, p 203–208

    Google Scholar 

  22. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamon, Elsevier Science Ltd., Oxford, UK, 1995, p 415–429

    Google Scholar 

  23. S.S. Zhou, K.K. Deng, J.C. Li, K.B. Nie, F.J. Xu, H.F. Zhou, and J.F. Fan, Hot Deformation Behavior and Workability Characteristics of Bimodal Size SiCp/AZ91 Magnesium Matrix Composite with Processing Map, Mater. Des., 2014, 64, p 177–184

    CAS  Google Scholar 

  24. N.D. Ryan and H.J. Mcqueen, Flow Stress, Dynamic Restoration, Strain Hardening and Ductility in Hot Working of 316 Steel, J. Mater. Process. Technol., 1990, 21, p 177–199

    Google Scholar 

  25. E.I. Poliak and J.J. Jonas, A One-Parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta Mater., 1996, 44, p 127–136

    CAS  Google Scholar 

  26. I. Mejía, A. Bedolla-Jacuinde, C. Maldonado, and J.M. Cabrera, Determination of the Critical Conditions for the Initiation of Dynamic Recrystallization in Boron Microalloyed Steels, Mater. Sci. Eng. A, 2011, 528, p 4133–4140

    Google Scholar 

  27. J.Q. Zhang, H.S. Di, and X.Y. Wang, Flow Softening of 253 MA Austenitic Stainless Steel During Hot Compression at Higher Strain Rates, Mater. Sci. Eng. A, 2016, 650, p 483–491

    CAS  Google Scholar 

  28. W. Roberts and B. Ahlblom, A Nucleation Criterion for Dynamic Recrystallization During Hot Working, Acta Metall., 1978, 26, p 801–813

    CAS  Google Scholar 

  29. S. Mandal, M. Jayalakshmi, A.K. Bhaduri, and V.S. Sarma, Effect of Strain Rate on the Dynamic Recrystallization Behavior in a Nitrogen-Enhanced 316L (N), Metall. Mater. Trans. A, 2014, 45, p 5645–5656

    CAS  Google Scholar 

  30. D.G. Cram, H.S. Zurob, Y.J.M. Brechet, and C.R. Hutchinson, Modelling Discontinuous Dynamic Recrystallization Using a Physically Based Model for Nucleation, Acta Mater., 2009, 57, p 5218–5228

    CAS  Google Scholar 

  31. C.M. Sellars and J.A. Whiteman, Recrystallization and Grain Growth in Hot Rolling, Met. Sci. J., 1979, 13, p 187–194

    CAS  Google Scholar 

  32. H.L. Wei, G.Q. Liu, X. **ao, H.T. Zhao, H. Ding, and R.M. Kang, Characterization of Hot Deformation Behavior of a New Microalloyed C-Mn-Al High-Strength Steel, Mater. Sci. Eng. A, 2013, 564, p 140–146

    CAS  Google Scholar 

  33. M. Ueki, S. Horie, and T. Nakamura, Factors Affecting Dynamic Recrystallization of Metals and Alloys, Mater. Sci. Technol., 1987, 3, p 329–337

    CAS  Google Scholar 

  34. W. Gao, A. Belyakov, H. Miura, and T. Sakai, Dynamic Recrystallization of Copper Polycrystals with Different Purities, Mater. Sci. Eng. A, 1999, 265, p 233–239

    Google Scholar 

  35. A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson, Recrystallization in AISI, 304 Austenitic Stainless Steel During and After Hot Deformation, Mater. Sci. Eng. A, 2008, 485, p 664–672

    Google Scholar 

  36. Rajeshwar R. Eleti, Tilak Bhattacharjee, Lijia Zhao, Pinaki P. Bhattacharjee, and Nobuhiro Tsuji, Hot Deformation Behavior of CoCrFeMnNi FCC High Entropy Alloy, Mater. Chem. Phys., 2018, 210, p 176–186

    CAS  Google Scholar 

  37. K. Yamanaka, M. Mori, S. Kurosu, H. Matsumoto, and A. Chiba, Ultrafine Grain Refinement of Biomedical Co-29Cr-6Mo Alloy During Conventional Hot-Compression Deformation, Metall. Mater. Trans. A, 2009, 40, p 1980–1994

    Google Scholar 

  38. D.G. Brandon, The Structure of High-Angle Grain Boundaries, Acta Metall., 1966, 14, p 1479–1484

    CAS  Google Scholar 

  39. V. Randle, A Methodology for Grain Boundary Plane Assessment by Single-Section Trace Analysis, Scr. Mater., 2001, 44, p 2789–2794

    CAS  Google Scholar 

  40. D.M. Saylor, B.S. El-Dasher, B.L. Adams, and G.S. Rohrer, Measuring the Five-Parameter Grain-Boundary Distribution from Observations of Planar Sections, Metall. Mater. Trans. A, 2004, 35, p 1981–1989

    Google Scholar 

  41. S. Mandal, P.V. Sivaprasad, B. Raj, and V.S. Sarma, Grain Boundary Microstructural Control Through Thermomechanical Processing in a Titanium-Modified Austenitic Stainless Steel, Metall. Mater. Trans. A, 2008, 39, p 3298–3307

    Google Scholar 

  42. H. Gleiter, The Formation of Annealing Twins, Acta Metall., 1969, 17, p 1421–1428

    CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (No. 51974084). The authors would like to thank PhD student Yuqian Wang for her kind assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Chen or Hua Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhang, XM., Cai, ZH. et al. Hot Deformation Behavior of a High-Mn Austenitic Steel for Cryogenic Liquified Natural Gas Applications. J. of Materi Eng and Perform 29, 5503–5514 (2020). https://doi.org/10.1007/s11665-020-05011-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05011-5

Keywords

Navigation