Log in

Reaction Behavior, Microstructure, and Radiative Properties of In Situ ZrB2-SiC Ceramic Composites from a Si-Zr-B4C System

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present work focuses on the in situ self-propagating high-temperature synthesis (SHS) of ZrB2-SiC (ZS) ceramic composites in a Si-Zr-B4C system. The reaction process characteristics, microstructure and radiative properties of products were investigated. The thermal conductivity of ZS/acrylic composite coating filled with 40 wt.% ZS is 1.77 W/m K, which is ninefold enhancement in comparison with neat acrylic coating. In addition, in situ ZS/acrylic composite coatings showed an excellent increase in infrared emissivity up to 0.93 for 45 wt.% in situ ZS content, which was nine times more than bare aluminum alloy substrate. The produced coatings remarkably increased the heat dissipation performance of an aluminum alloy tube by 17.9%, implying a promising prospect for real passive heat dissipation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Zimmermanm, G. Hilmas, and W. Fahrenholtz, Thermophysical Properties of ZrB2 and ZrB2-SiC Ceramics, J. Am. Ceram. Soc., 2008, 91, p 1405–1411

    Article  Google Scholar 

  2. S. Guo, Densification of ZrB2-Based Composites and Their Mechanical and Physical Properties: A Review, J. Eur. Ceram. Soc., 2009, 29, p 995–1011

    Article  CAS  Google Scholar 

  3. F. Monteverde, S. Guicciardi, and A. Bellosi, Advances in Microstructure and Mechanical Properties of Zirconium Diboride Based Ceramics, Mater. Sci. Eng. A Struct., 2003, 346(1–2), p 310–319

    Article  Google Scholar 

  4. S. Levine, E. Opila, M. Halbig, J. Kiser, M. Singh, and J. Salem, Evaluation of Ultra-High Temperature Ceramics for Aeropropulsion Use, J. Eur. Ceram. Soc., 2002, 22, p 2757–2767

    Article  CAS  Google Scholar 

  5. F.Y. Yang, X.H. Zhang, J.C. Han, and S.Y. Du, Processing and Mechanical Properties of Short Carbon Fibers Toughened Zirconium Diboride-Based Ceramics, Mater. Des., 2008, 29(9), p 1817–1820

    Article  CAS  Google Scholar 

  6. S. Meng, G. Liu, and S. Sun, Prediction of Crack Depth During Quenching Test for an Ultra High Temperature Ceramic, Mater. Des., 2010, 31(1), p 556–559

    Article  CAS  Google Scholar 

  7. S. Meng, G. Liu, Y. Guo, X. Xu, and F. Song, Mechanisms of Thermal Shock Failure for Ultra-High Temperature Ceramic, Mater. Des., 2009, 30(6), p 2108–2112

    Article  CAS  Google Scholar 

  8. A. Chamberlain, W. Fahrenholtz, and G.E. Hilmas, High-Strength Zirconium Diboride-Based Ceramics, J. Am. Cerm. Soc., 2004, 87(6), p 1170–1172

    Article  CAS  Google Scholar 

  9. B. Zhao, Y. Zhang, J. Li, B. Yang, T. Wang, Y. Hu, D. Sun, R. Li, S. Yin, Z. Feng, and T. Sato, Morphology and Mechanism Study for the Synthesis of ZrB2-SiC Powders by Different Methods, J. Solid State Chem., 2013, 207, p 1–5

    Article  CAS  Google Scholar 

  10. Y. Cheng, Y. Lyu, W. Han, P. Hu, S. Zhou, and X. Zhang, Multiscale Toughening of ZrB2-SiC-Graphene@ZrB2-SiC Dual Composite Ceramics, J. Am. Ceram. Soc., 2019, 102, p 2041–2052

    CAS  Google Scholar 

  11. S. Song, Y. Lin, Y. Fan, R. Li, P. Hu, and Q. Zhen, In Situ Fabrication of ZrB2-SiC Composites Powders with Controllable Morphology by a Two-Step Calcination Method, J. Solid State Chem., 2019, 273, p 101–105

    Article  CAS  Google Scholar 

  12. X. Deng, S. Du, H. Zhang, F. Li, J. Wang, W. Zhao, F. Lian, Z. Huang, and S. Zhang, Preparation and Characterization of ZrB2-SiC Composite Powders from Zircon via Microwave-Assisted Boro/Carbothermal Reduction, Ceram. Int., 2015, 41, p 14419–14426

    Article  CAS  Google Scholar 

  13. Y. Cheng, Y. Qi, P. Hu, S. Zhou, G. Chen, J. An, K. **, and W. Han, ZrB2-SiC-G Composites Prepared by Spark Plasma Sintering of In-Situ Synthesized ZrB2-SiC-C Composites Powders, J. Am. Ceram. Soc., 2016, 99(6), p 2131–2137

    Article  CAS  Google Scholar 

  14. I.V. Iatsyuk, Y.S. Pogozhev, E.A. Levashov, A.V. Novikov, N.A. Kochetov, and D.Y. Kovalev, Combustion Synthesis of High-Temperature ZrB2-SiC Ceramics, J. Eur. Ceram. Soc., 2018, 38(7), p 2792–2801

    Article  CAS  Google Scholar 

  15. Y. Li, H. Zhang, X. Yang, G. He, Z. Yang, and J. Li, The Combustion Synthesis of Highly Crystalline Boron Nitride Nanosheets and Their Application in Thermoconductive Polymeric Composites, CrystEngComm, 2019, 21, p 5461

    Article  CAS  Google Scholar 

  16. W.W. Wu, G.J. Zhang, Y.M. Kan, and P.L. Wang, Combustion Synthesis of ZrB2-SiC Composite Powders Ignited in Air, Mater. Lett., 2009, 63, p 1422–1424

    Article  CAS  Google Scholar 

  17. S. Meng, H. Chen, J. Hu, and Z. Wang, Radiative Properties Characterization of ZrB2-SiC-Based Ultrahigh Temperature Ceramic at High Temperature, Mater. Des., 2011, 32, p 377–381

    Article  Google Scholar 

  18. L. Scatteia, R. Borrelli, G. Cosentino, E. Beche, J.L. Sans, and M. Balat-Pichelin, Catalytic and Radiative Behaviors of ZrB2-SiC Ultrahigh Temperature Ceramic Composites, J. Spacecr. Rochets, 2006, 43, p 1004–1012

    Article  CAS  Google Scholar 

  19. F.Y. Wang, L.F. Cheng, Y.N. **e, J. **, and L.T. Zhang, Effects of SiC Shape and Oxidation on the Infrared Emissivity Properties of ZrB2-SiC Ceramics, J. Alloys Compd., 2015, 625, p 1–7

    Article  CAS  Google Scholar 

  20. Y. Cheng, Y. Liu, Y. An, and N. Hu, High Thermal-Conductivity rGO/ZrB2-SiC Ceramics Consolidated from ZrB2-SiC Particles Decorated GO Hybrid Foam with Enhanced Thermal Shock Resistance, J. Eur. Ceram. Soc., 2020, 40, p 2760–2767

    Article  CAS  Google Scholar 

  21. R. Tu, B. **ao, S. Zhang, Z. Deng, Q. Li, M. Yang, T. Goto, L. Zhang, and H. Ohmori, Mechanical, Electrical and Thermal Properties of ZrC-ZrB2-SiC Ternary Eutectic Composites Prepared by Arc Melting, J. Eur. Ceram. Soc., 2018, 38, p 3759–3766

    Article  CAS  Google Scholar 

  22. G. Chen, Y. Wang, Y. Zou, D. Jia, and Y. Zhou, A Fractal-Patterned Coating on Titanium Alloy for Stable Passive Heat Dissipation and Robust Superhydrophobicity, Chem. Eng. J., 2019, 374, p 231–241

    Article  CAS  Google Scholar 

  23. J. Lee, D. Kim, C.H. Choi, and W. Chung, Nanoporous Anodic Alumina Oxide Layer and Its Sealing for the Enhancement of Radiative Heat Dissipation of Aluminum Alloy, Nano Energy, 2017, 31, p 504–513

    Article  CAS  Google Scholar 

  24. D.S. Muratov, D.V. Kuznetsov, I.A. Iľinykh, I.N. Burmistrov, and I.N. Mazov, Thermal Conductivity of Polypropylene Composites Filled with Silane-Modified Hexagonal BN, Compd. Sci. Technol., 2015, 111, p 40–43

    Article  CAS  Google Scholar 

  25. G. Liu, K. Chen, and J. Li, Combustion Synthesis: An Effective Tool for Preparing Inorganic Materials, Scripta Mater., 2018, 157, p 167–173

    Article  CAS  Google Scholar 

  26. J. Pourasad and N. Ehsani, In-Situ Synthesis of SiC-ZrB2 Coating by a Novel Pack Cementation Technique to Protect Graphite Against Oxidation, J. Alloys Compd., 2017, 690, p 692–698

    Article  CAS  Google Scholar 

  27. J.J. Moorea and H.J. Feng, Combustion Synthesis of Advanced Materials: Part I. Reaction Parameters, Prog. Mater Sci., 1995, 39(4–5), p 243–273

    Article  Google Scholar 

  28. Y. Yan, H. Zhang, Z. Huang, J. Liu, and D. Jiang, In Situ Synthesis of Ultrafine ZrB2-SiC Composite Powders and the Pressureless Sintering Behaviors, J. Am. Ceram. Soc., 2008, 91(4), p 1372–1376

    Article  CAS  Google Scholar 

  29. M. Zhang, B. Zou, J. Xu, X. Cai, Y. Wang, M. Huang, Y. Fang, Y. Huo, and X. Cao, Reaction Behavior, Microstructure and Application in Coating of In Situ ZrC-ZrB2 Ceramic Composites Powders from a Co-Zr-B4C System, Mater. Des., 2015, 81, p 65–72

    Article  CAS  Google Scholar 

  30. Q.L. Guo, Y.H. Yang, J.G. Li, Q. Shen, and L. Zhang, In Situ Synthesis and Properties of Zr2Al3C4/ZrB2 Composites, Mater. Des., 2011, 32, p 4289–4294

    Article  CAS  Google Scholar 

  31. Q. Hu, P. Luo, M. Zhang, M. Song, and J. Li, Combustion and Formation Behavior of Hybrid ZrB2 and ZrC Particles in Al-Zr-B4C System During Self-Propagating High Temperature Synthesis, Int. J. Refract. Met. Hard Mater, 2012, 31, p 89–95

    Article  CAS  Google Scholar 

  32. Y. Lin, J. Liu, S. Song, J. Liu, S. Bashir, Y. Guo, and Q. Zhen, Microsturcture Evolution and Growth Behavior of Rod-Shaped ZrB2 In Situ Preparation of ZrB2-SiC Composite Powders, Ceram. Int., 2019, 45, p 4016–4021

    Article  CAS  Google Scholar 

  33. W. Tan, M. Adducci, C. Petorak, B. Thompson, A.E. Brenner, and R.W. Trice, Effect of Rare-Earth Dopant (Sm) Concentration on Total Hemispherical Emissivity and Ablation Resistance of ZrB2/SiC Coatings, J. Eur. Ceram. Soc., 2016, 36(16), p 3833–3841

    Article  CAS  Google Scholar 

  34. N. Li, P. **ng, C. Li, P. Wang, X. **, and X. Zhang, Influence of Surface Oxidation on the Radiative Properties of ZrB2-SiC Composites, Appl. Surf. Sci., 2017, 409, p 1–7

    Article  CAS  Google Scholar 

  35. R. Xu, W. Wang, and D. Yu, A Novel Multilayer Sandwich Fabric-Based Composite Material for Infrared Stealth and Super Thermal Insulation Protection, Compos. Struct., 2019, 212, p 58–65

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support by the National Key Research and Development Program of China (Nos. 2016YFB0700204, 2019YFC1711904) and National Natural Science Foundation of China (Nos. 51702331, 51702332, 51572268, 51432004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ao Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yang, X., Wang, W. et al. Reaction Behavior, Microstructure, and Radiative Properties of In Situ ZrB2-SiC Ceramic Composites from a Si-Zr-B4C System. J. of Materi Eng and Perform 29, 4822–4829 (2020). https://doi.org/10.1007/s11665-020-04990-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04990-9

Keywords

Navigation