Log in

Corrosion Protection of Cu Electrical Cable by W-Ni Composite Coatings Doped with TiO2 Nanoparticles: Influence of Pulse Currents

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

W-Ni-TiO2 nano-composite layers were electrodeposited on copper surface by both direct (DC) and pulse (PC) currents. The copper substrates are samples from the main electrical cable used for the Renault K-Z (the latest 100% electric vehicle). In order to investigate coating morphology, atomic force microscopy was used, while energy-dispersive x-ray analysis was applied to determine nano-composite composition. Based on surface morphology, the W-Ni-TiO2 (DC) alloy surface was covered by massive agglomerates, especially when the W-Ni-TiO2 (PC) nano-composite coating was more compact, thicker and exhibited smaller grain size. The coated surface revealed different contents such as 43.4 and 65.4% of W in DC and PC coatings, respectively, which are considered to be a novel composition of the W-Ni alloy. XRD studies revealed that the NiW2 phase only occurs in the W-Ni-TiO2 (PC) nano-composite alloy. Electrical and thermal conductivities, microhardness and porosity values are enhanced by the addition of TiO2 to the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Ghaderi, M. Rezagholizadeh, A. Heidary, and S.M. Monirvaghefi, The Effect of Al2O3 Nanoparticles on Tribological and Corrosion Behavior of Electroless Ni-B-Al2O3 Composite Coating, Prot. Met. Phys. Chem. Surf., 2016, 52, p 854–858

    Article  CAS  Google Scholar 

  2. A.A. Revina, M.A. Kuznetsov, A.M. Chekmarev, E.E. Boyakov, and V.I. Zolotarevskii, Synthesis and Physicochemical Properties of Rhenium Nanoparticles, Prot. Met. Phys. Chem. Surf., 2018, 54, p 43–50

    Article  CAS  Google Scholar 

  3. H. Lu and T.I. Khan, Tribological Behavior of Electrodeposited Ni-SnO2 Nanocomposite Coatings on Steel, Surf. Coat. Technol., 2011, 205, p 2871

    Article  Google Scholar 

  4. N. Bertrand, F. Maury, and P. Duverneuil, SnO2 Coated Ni Particles Prepared by Fluidized Bed Chemical Vapor Deposition, Surf. Coat. Technol., 2006, 200, p 6733

    Article  CAS  Google Scholar 

  5. X. Zhang, R. Hang, H. Wu, X. Huang, Y. Ma, N. Lin, X. Yao, L. Tian, and B. Tang, Synthesis and Antibacterial Property of Ag-Containing TiO2 Coatings by Combining Magnetron Sputtering with Micro-arc Oxidation, Surf. Coat. Technol., 2013, 235, p 748

    Article  CAS  Google Scholar 

  6. A. Katamipour, M. Farzam, and I. Danaee, Effects of Sonication on Anticorrosive and Mechanical Properties of Electrodeposited Ni-Zn-TiO2 Nanocomposite Coatings, Surf. Coat. Technol., 2014, 254, p 358

    Article  CAS  Google Scholar 

  7. A. Heidarpour, S. Ahmadifard, and S. Kazemi, On the Al5083-Al2O3-TiO2 Hybrid Surface Nano Composite Produced by Friction Stir Processing, Prot. Met. Phys. Chem. Surf., 2018, 54, p 409–415

    Article  CAS  Google Scholar 

  8. G. Parida, D. Chaira, M. Chopkar, and A. Basu, Synthesis and Characterization of Ni-TiO2 Composite Coatings by Electro-co-Deposition, Surf. Coat. Technol., 2011, 205, p 4871

    Article  CAS  Google Scholar 

  9. Y. Wan, B. Sun, Z. Xu, and W. Chao, Effect of UV Irradiation on Wear Protection of TiO2 and Ni-Doped TiO2 Coatings, Appl. Surf. Sci., 2012, 258, p 4347

    Article  CAS  Google Scholar 

  10. A. Golgoon, M. Aliofkhazrae, and M. Toorani, Nano Composite Protective Coatings Fabricated by Electrostatic Spray Method, Prot. Met. Phys. Chem. Surf., 2018, 54, p 192–221

    Article  CAS  Google Scholar 

  11. M. Rakapa, E.E. Kalua, and S. Özkar, Cobalt-Nickel-Phosphorus Supported on Pd-Activated TiO2 (Co-Ni-P/Pd-TiO2) as Cost-Effective and Reusable Catalyst for Hydrogen Generation from Hydrolysis of Alkaline Sodium Borohydride Solution, J. Alloys Compd., 2011, 509, p 7016

    Article  Google Scholar 

  12. F. Li, L. Jiang, J. Du, S. Wang, X. Liu, and F. Zhan, Investigations on Synthesis and Hydrogenation Properties of Mg-20 wt.% Ni-1 wt.% TiO2 Composite Prepared by Reactive Mechanical Alloying, J. Alloys Compd., 2008, 452, p 421

    Article  CAS  Google Scholar 

  13. N. Sun, B. Du, F. Liu, P. Si, M. Zhao, X. Zhang, and G. Shi, Influence of Annealing on the Microwave-Absorption Properties of Ni/TiO2 Nanocomposites, J. Alloys Compd., 2013, 577, p 533

    Article  CAS  Google Scholar 

  14. L. Elias and A. Chitharanjan Hegde, Electrolytic Synthesis of Ni-W-MWCNT Composite Coating for Alkaline Hydrogen Evolution Reaction, J. Mater. Eng. Perform., 2018, 27, p 1033–1039

    Article  CAS  Google Scholar 

  15. N.P. Wasekar, L. Bathini, and G. Sundararajan, Tribological Behavior of Pulsed Electrodeposited Ni-W/SiC Nanocomposites, J. Mater. Eng. Perform., 2018, 27, p 1–10

    Article  Google Scholar 

  16. S.M. Hammadi, R. Kiarasi, M.K. Aliov, A.R. Sabur, and A.H. Tabrizi, Study of Corrosion Resistance and Nanostructure for Tertiary Al2O3/Y2O3/CNT Pulse Electrodeposited Ni-Based Nanocomposite, Trans. Inst. Metal Finish., 2010, 88(2), p 93

    Article  Google Scholar 

  17. N. Imaz, E. Garcia-Lecina, and J.A. Diez, Corrosion Properties of Double Layer Nickel Coatings Obtained by Pulse Plating Techniques, Trans. Inst. Metal Finish., 2010, 88(5), p 256

    Article  CAS  Google Scholar 

  18. W. Sassi, L. Dhouibi, P. Berçot, and M. Rezrazi, The Effect of SiO2 Nanoparticles on Physico-Chemical Properties of Modified Ni-W Nano Composite Coatings, Appl. Surf. Sci., 2015, 324, p 369

    Article  CAS  Google Scholar 

  19. N.S. Qu, D. Zhu, K.C. Chan, and W.N. Lei, Pulse Electrodeposition of Nanocrystalline Nickel Using Ultra Narrow Pulse Width and High Peak Current Density, Surf. Coat. Technol., 2003, 168, p 123

    Article  CAS  Google Scholar 

  20. T. Song and D.Y. Li, Tribological, Mechanical and Electrochemical Properties of Nanocrystalline Copper Deposits Produced by Pulse Electro-Deposition, Nanotechnology, 2006, 17, p 65

    Article  Google Scholar 

  21. T. Borkar and S.P. Harimkar, Effect of Electrodeposition Conditions and Reinforcement Content on Microstructure and Tribological Properties of Nickel Composite Coatings, Surf. Coat. Technol., 2011, 205, p 4124

    Article  CAS  Google Scholar 

  22. M.A. Khazrayie and A.R. Aghdam, Si3N4/Ni Nano Composite Formed by Electroplating: Effect of Average Size of Nanoparticulates, Trans. Nonferr. Met. Soc. China, 2010, 20, p 1017

    Article  CAS  Google Scholar 

  23. I.R. Mafi and C. Dehghanian, Studying the Effects of the Addition of TiN Nanoparticles to Ni-P Electroless Coatings, Appl. Surf. Sci., 2011, 258, p 1876

    Article  CAS  Google Scholar 

  24. S. Oktay, Z. Kahraman, M. Urgen, and K. Kazmanli, XPS Investigations of Tribolayers Formed on TiN and (Ti, Re)N Coatings, Appl. Surf. Sci., 2015, 328, p 255

    Article  CAS  Google Scholar 

  25. K.H. Hou and Y.C. Chen, Preparation and Wear Resistance of Pulse Electrodeposited Ni-W/Al2O3 Composite Coatings, Appl. Surf. Sci., 2011, 257, p 6340

    Article  CAS  Google Scholar 

  26. M.F. Cardinal, P.A. Castro, J. Baxi, H. Liang, and F.J. Williams, Characterization and Frictional Behavior of Nanostructured Ni-W-MoS2 Composite Coatings, Surf. Coat. Technol., 2009, 204, p 85

    Article  CAS  Google Scholar 

  27. M. Aliofkhazraei, S. Ahangarani, and A.S. Rouhaghdam, Effect of the Duty Cycle of Pulsed Current on Nano Composite Layers Formed by Pulsed Electrodeposition, Rare Met., 2010, 29(2), p 209

    Article  CAS  Google Scholar 

  28. W. Sassi, L. Dhouibi, P. Berçot, and M. Rezrazi, Sensitivity of the Ni-W Nanocomposite Doped Amorphous Nano-SiO2 Particles to Electrolysis pH, J. Mater. Environ. Sci., 2015, 6(7), p 1801

    Google Scholar 

  29. W. Sassi, L. Dhouibi, P. Berçot, M. Rezrazi, and E. Triki, Comparative study of Protective Nickel-Tungsten Deposit Behavior Obtained by Continuous and Pulsed Currents from Citrate-Ammonia Media, Surf. Coat. Technol., 2012, 206, p 4235

    Article  CAS  Google Scholar 

  30. W. Sassi, L. Dhouibi, P. Berçot, M. Rezrazi, and E. Triki, Study of the Electroplating Mechanism and Physico-Chemical Properties of Deposited Ni-W-Silicate Composite Alloy, Eletrochim. Acta, 2014, 117, p 443

    Article  CAS  Google Scholar 

  31. W. Sassi, Etude de l’effet des inhibiteurs et des nanoparticules sur les propriétés physico-chimiques et sur la résistance à la corrosion des revêtements électrolytiques Ni-W. Thèse de Doctorat, Université de Franche-Comté, France 2014;Chapitre III:159.

  32. P. Leroy, N. Devau, A. Revil, and M. Bizi, Influence of Surface Conductivity on the Apparent Zeta Potential of Amorphous Silica Nanoparticles, J. Colloid Interface Sci., 2013, 410, p 81

    Article  CAS  Google Scholar 

  33. R. Sprycha, Electrical Double Layer at Alumina/Electrolyte Interface: I. Surface Charge and Zeta Potential, J. Colloid Interface Sci., 1989, 127, p 1

    Article  CAS  Google Scholar 

  34. J. Lewandowska-Lancucka, M. Staszewska, M. Szuwarzynski, M. Kępczynski, M. Romek, W. Tokarz, A. Szpak, G. Kania, and M. Nowakowska, Synthesis and Characterization of the Superparamagnetic Iron Oxide Nanoparticles Modified with Cationic Chitosan and Coated with Silica Shell, J. Alloys Compd., 2014, 586, p 45

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Sassi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sassi, W., Dhouibi, L., Hihn, JY. et al. Corrosion Protection of Cu Electrical Cable by W-Ni Composite Coatings Doped with TiO2 Nanoparticles: Influence of Pulse Currents. J. of Materi Eng and Perform 28, 5639–5648 (2019). https://doi.org/10.1007/s11665-019-04288-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04288-5

Keywords

Navigation