Log in

Effects of Annealing on the Microstructures and Mechanical Properties of Cold-Rolled TB8 Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The microstructure and mechanical properties of TB8 cold-rolled plate with a thickness reduction of 50% during annealing at different temperatures are investigated. The results show that annealing for 1 h below 750 °C does not induce the recrystallization transition, remaining the main texture components of {001} <110>, {113} <110> and {112} <110>. The ellipsoidal ω phase is formed when the alloy is annealed at 400 °C. α phase is formed when the alloy is annealed from 450 to 750 °C. The size and volume fraction of α phase increases first and then declines in control of driving force of phase transformation and diffusion. The synergistic effect of the precipitation of ω phase and α phase and the disappearance of dislocation makes the tensile strength of the plate decrease first, then increase, and finally decrease with the increase in annealing temperature. The change in plasticity is opposite to that of strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.F. Sun, Z.W. Zhang, M.L. Zhang, F.C. Jiang, and M.H. Ding, Microstructure Evolution and Their Effects on the Mechanical Properties of TB8 Titanium Alloy, J. Alloys Compd., 2016, 663, p 769-774

    Article  Google Scholar 

  2. R.R. Boyer and R.D. Briggs, The Use of β Titanium Alloys in the Aerospace Industry, J. Mater. Eng. Perform., 2015, 14(6), p 681-685

    Article  Google Scholar 

  3. J.C. Williams and E.A. Starke, Progress in Structural Materials for Aerospace Systems, Acta Mater., 2003, 51(19), p 5775-5799

    Article  Google Scholar 

  4. S. Samuel, S. Nag, S. Nasrazadani, V. Ukirde, M.E. Bouanani, A. Mohandas, K. Nguyen, and R. Banerjee, Corrosion Resistance and In Vitro Response of Laser-Deposited Ti-Nb-Zr-Ta Alloys for Orthopedic Implant Applications, J. Biomed. Mater. Res. Part A, 2010, 94A(4), p 1251-1256

    Google Scholar 

  5. R.S. Bedi, D.E. Beving, L.P. Zanello, and Y. Yan, Biocompatibility of Corrosion-Resistant Zeolite Coatings for Titanium Alloy Biomedical Implants, Acta Biomater., 2009, 5(8), p 3265-3271

    Article  Google Scholar 

  6. K.X. Gu, B. Zhao, Z.J. Weng, K.K. Wang, H.K. Cai, and J.J. Wang, Microstructure Evolution in Metastable β Titanium Alloy Subjected to Deep Cryogenic Treatment, Mater. Sci. Eng. A, 2018, 723, p 157-164

    Article  Google Scholar 

  7. M.J. Lai, T. Li, and D. Raabe, ω Phase Acts as a Switch between Dislocation Channeling and Joint Twinning- and Transformation-Induced Plasticity in a Metastable β Titanium Alloy, Acta Mater., 2018, 151, p 67-77

    Article  Google Scholar 

  8. T.W. Xu, J.S. Li, F.S. Zhang, F.Y. Wang, X.H. Liu, and Y. Feng, Microstructure Evolution during Cold-Deformation and Aging Response after Annealing of TB8 Titanium Alloy, Rare Met. Mater. Eng., 2016, 45(3), p 575-580

    Article  Google Scholar 

  9. V. Hounkpati, S. Fréour, D. Gloaguen, V. Legrand, J. Kelleher, W. Kockelmann, and S. Kabra, In Situ Neutron Measurements and Modelling of the Intergranular Strains in the Near-β Titanium Alloy Ti-β21S, Acta Mater., 2016, 109, p 341-352

    Article  Google Scholar 

  10. B. Tang, B. Tang, F.B. Han, J.S. Li, and G.J. Yang, Hot Deformation Behavior of TB8 Alloy near the β-Transus, Rare Met. Mater. Eng., 2013, 42(9), p 1761-1766

    Article  Google Scholar 

  11. T.W. Xu, J.S. Li, S.S. Zhang, F.S. Zhang, and X.H. Liu, Cold Deformation Behavior of the Ti-15Mo-3Al-2.7Nb-0.2Si Alloy and Its Effect on α Precipitation and Tensile Properties in Aging Treatment, J. Alloys Compd., 2016, 682, p 404-411

    Article  Google Scholar 

  12. S.A. Mantri, D. Choudhuri, T. Alam, G.B. Viswanathan, J.M. Sosa, H.L. Fraser, and R. Banerjee, Tuning the Scale of α Precipitates in β-Titanium Alloys for Achieving High Strength, Scr. Mater., 2018, 154, p 139-144

    Article  Google Scholar 

  13. S. Sadeghpour, S.M. Abbasi, M. Morakabati, L.P. Karjalainen, and D.A. Porter, Effect of Cold Rolling and Subsequent Annealing on Grain Refinement of a Beta Titanium Alloy Showing Stress-Induced Martensitic Transformation, Mater. Sci. Eng. A, 2018, 731, p 465-478

    Article  Google Scholar 

  14. M. Ahmed, D.G. Savvakin, O.M. Ivasishin, and E.V. Pereloma, The Effect of Thermo-Mechanical Processing and Ageing Time on Microstructure and Mechanical Properties of Powder Metallurgy near β Titanium Alloys, J. Alloys Compd., 2017, 714, p 610-618

    Article  Google Scholar 

  15. Z.X. Du, S.L. **ao, Y.P. Shen, J.S. Liu, J. Liu, L.J. Xu, F.T. Kong, and Y.Y. Chen, Effect of Hot Rolling and Heat Treatment on Microstructure and Tensile Properties of High Strength Beta Titanium Alloy Plates, Mater. Sci. Eng. A, 2015, 631, p 67-74

    Article  Google Scholar 

  16. B. Tang, H.C. Kou, X. Zhang, P.Y. Gao, and J.S. Li, Study on the Formation Mechanism of α Lamellae in a near β Titanium Alloy, Prog. Nat. Sci. Mater. Int., 2016, 26(4), p 385-390

    Article  Google Scholar 

  17. A.R.V. Nunes, S. Borborema, L.S. Araújo, J. Dille, L. Malet, and L.H.D. Almeida, Production, Microstructure and Mechanical Properties of Cold-Rolled Ti-Nb-Mo-Zr Alloys for Orthopedic Applications, J. Alloys Compd., 2018, 743, p 141-145

    Article  Google Scholar 

  18. S.J. Dai, Y. Wang, and F. Chen, Effects of Annealing on the Microstructures and Mechanical Properties of Biomedical Cold-Rolled Ti-Nb-Zr-Mo-Sn Alloy, Mater. Charact., 2015, 104, p 16-22

    Article  Google Scholar 

  19. S. Dubinskiy, A. Korotitskiy, S. Prokoshkin, and V. Brailovski, In Situ X-ray Diffraction Study of a Thermal and Isothermal Omega-Phase Crystal Lattice in Ti-Nb-Based Shape Memory Alloys, Mater. Lett., 2016, 168, p 155-157

    Article  Google Scholar 

  20. T. Li, D. Kent, G. Sha, L.T. Stephenson, A.V. Ceguerra, S.P. Ringer, M.S. Dargusch, and J.M. Cairney, New Insights into the Phase Transformations to Isothermal ω and ω-Assisted α in near β-Ti Alloys, Acta Mater., 2016, 106, p 353-366

    Article  Google Scholar 

  21. R.F. Dong, J.S. Li, J.K. Fan, H.C. Kou, and B. Tang, Precipitation of α Phase and Its Morphological Evolution during Continuous Heating In A Near β Titanium Alloy Ti-7333, Mater. Charact., 2017, 132, p 199-204

    Article  Google Scholar 

  22. X. Zhang, H.C. Kou, J.S. Li, F.S. Zhang, and L. Zhou, Evolution of the Secondary α Phase Morphologies during Isothermal Heat Treatment in Ti-7333 Alloy, J. Alloys Compd., 2013, 577, p 516-522

    Article  Google Scholar 

  23. L. Mora, C. Quesne, and R. Penelle, Relationships among Thermomechanical Treatments, Microstructure, and Tensile Properties Of A Near Beta-Titanium Alloy: β-CEZ: Part II. Relationships between Thermomechanical Treatments and Tensile Properties, J. Mater. Res., 1996, 11, p 89-99

    Article  Google Scholar 

  24. Z.X. Du, S.L. **ao, L.J. Xu, J. Tian, F.T. Kong, and Y.Y. Chen, Effect of Heat Treatment on Microstructure and Mechanical Properties of a New β High Strength Titanium Alloy, Mater. Des., 2014, 55, p 183-190

    Article  Google Scholar 

  25. F. Langmayr, P. Fratzl, G. Vogl, and W. Miekeley, Crossover from Omega-Phase to Alpha-Phase Precipitation in BCC Ti-Mo, Phys. Rev. B Condens. Mater. Phys., 1994, 49(17), p 11759-11766

    Article  Google Scholar 

  26. D.L. Moffat and D.C. Larbalestier, The Competition between the α and Omega Phases in Aged Ti-Nb Alloys, Metall. Trans. A, 1988, 19(7), p 1687-1694

    Article  Google Scholar 

  27. D.H. **, Review on ω Phase in Body-Centered Cubic Metals and Alloys, Acta Metall. Sin. (Engl. Lett.), 2014, 27(1), p 1-11

    Article  Google Scholar 

  28. A. Lasalmonie and C. Chaix, Heterogeneous Precipitation of the ω Phase in a β Titanium Alloy, Philos. Mag. A, 1981, 44(4), p 973-981

    Article  Google Scholar 

  29. X.D. Zhang, J.M.K. Wiezorek, W.A. Baeslack, III, D.J. Evans, and H.L. Fraser, On the Stability of ω Phase in Ti-6-22-22S and Ti-6-4 Alloys, Scr. Mater., 1999, 41(6), p 659-665

    Article  Google Scholar 

  30. T. Yamane and J. Ueda, Tempering Behavior of a Ti-Cr Alloy Quenched from β Region, Trans. Jpn. Inst. Met., 1965, 6(3), p 151-153

    Article  Google Scholar 

  31. Y. Ohmori, T. Ogo, K. Nakai, and S. Kobayashi, Effects of ω-Phase Precipitation on β → α, α′′ Transformations in a Metastable β Titanium Alloy, Mater. Sci. Eng. A, 2001, 312(1), p 182-188

    Article  Google Scholar 

  32. S. Nag, R. Banerjee, R. Srinivasan, J.Y. Hwang, M. Harper, and H.L. Fraser, ω-Assisted Nucleation and Growth of α Precipitates in the Ti-5Al-5Mo-5V-3Cr-0.5Fe β Titanium Alloy, Acta Mater., 2009, 57(7), p 2136-2147

    Article  Google Scholar 

  33. R.F. Dong, J.S. Li, H.C. Kou, J.K. Fan, and B. Tang, Dependence of Mechanical Properties on the Microstructure Characteristics of a near β Titanium Alloy Ti-7333, J. Mater. Sci. Technol., 2019, 34(1), p 48-54

    Article  Google Scholar 

  34. G. Lütjering, J. Albrecht, C. Sauer, and T. Krull, The Influence of Soft, Precipitate-Free Zones at Grain Boundaries in Ti and Al Alloys on Their Fatigue and Fracture Behavior, Mater. Sci. Eng. A, 2007, 468(1), p 201-209

    Article  Google Scholar 

  35. L. Lilensten, Y. Danard, C. Brozek, S. Mantri, P. Castany, T. Gloriant, P. Vermaut, F. Sun, R. Banerjee, and F. Prima, On the Heterogeneous Nature of Deformation in a Strain-Transformable Beta Metastable Ti-V-Cr-Al Alloy, Acta Mater., 2019, 162, p 268-276

    Article  Google Scholar 

  36. C. Sauer and G. Lütjering, Influence of α Layers at β Grain Boundaries on Mechanical Properties of Ti-Alloys, Mater. Sci. Eng. A, 2001, 319(01), p 393-397

    Article  Google Scholar 

  37. B. Song, W.L. **ao, C.L. Ma, and L. Zhou, Influence of Phase Transformation Kinetics on the Microstructure and Mechanical Properties of near β Titanium Alloy, Mater. Charact., 2019, 148, p 224-232

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by Key Laboratory of Superlight Materials & Surface Technology (Harbin Engineering University), Ministry of Education; Application Technology Research and Development Program of Harbin under Grant (No.: 2017RAQXJ015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianfeng Sun or Ruizhi Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, B., Li, L., Sun, J. et al. Effects of Annealing on the Microstructures and Mechanical Properties of Cold-Rolled TB8 Alloy. J. of Materi Eng and Perform 28, 2816–2825 (2019). https://doi.org/10.1007/s11665-019-04082-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04082-3

Keywords

Navigation