Log in

Ultra-Shallow Do** B, Mg, Ni, Cu, Mn, Cr and Fe into SiC with Very High Surface Concentrations Based on Plasma Stimulated Room-Temperature Diffusion

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Very recently, we reported a novel do** method called plasma do** without any external bias (PDWOEB) for the introduction of some impurities into Si and GaN at room temperature (RT). In this work, the RT do** of some impurities, including B, Mg, Ni, Cu, Mn, Cr and Fe, into SiC with ultra-shallow depths of tens of nanometer and very high surface concentrations, approaching or exceeding 1E20/cm3, by using PDWOEB is reported. It has been found for the first time that the do** depths and surface concentrations of these impurities doped into SiC by the PDWOEB increase drastically with increasing do** time and the ferromagnetism of SiC due to Ni do** is demonstrated. Moreover, the approximate diffusivities of B, Mg, Ni, Cu, Mn, Cr and Fe in SiC at RT under plasma stimulation are obtained. The physical mechanism of PDWOEB is further discussed, and some unclear viewpoints are clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E.M. Handy, M.V. Rao, O.W. Holland, P.H. Chi, K.A. Jones, M.A. Derenge, R.D. Vispute, and T. Venkatesan, Al B and Ga Ion-Implantation Do** of SiC, J. Electron. Mater., 2000, 29, p 1340–1345

    Article  CAS  Google Scholar 

  2. C.L. Zhu, Rusli, and P. Zhao, Dual-Channel 4H-SiC Metal Semiconductor Field Effect Transistors, Solid-State Electron., 2007, 51, p 343–346

    Article  CAS  Google Scholar 

  3. B.J. Baliga, Prospects for Development of SiC Power Devices, Inst. Phys. Conf. Ser., 1996, 142, p 1

    CAS  Google Scholar 

  4. L.V. Rozario, L.P. Sadwick, R.J. Hwu, and D.B. King, SiC BGJFET Inverter for High Temperature/Power Applications, in Proc. of Fourth Int. High Temp. Electron. Conf. (HiTec) (1998), p 29

  5. C.E. Weitzel, Silicon Carbide High Frequency Devices, Mater. Sci. Forum, 1998, 264-268, p 907–912

    Article  CAS  Google Scholar 

  6. H. Matsunami, Current SiC Technology for Power Electronic Devices Beyond Si, Microelectron. Eng., 2006, 83, p 2–4

    Article  CAS  Google Scholar 

  7. S. Sriram et al., High-Performance Implanted-Channel SiC MESFETS, IEEE Electron Device Lett., 2011, 32(3), p 243–245

    Article  CAS  Google Scholar 

  8. T. Troffer, M. Schadt, T. Frank, H. Itoh, G. Pensl, J. Heindl, H.P. Strunk, and M. Maier, Do** of SiC by Implantation of Boron and Aluminum, Phys. Status Solidi A, 1997, 162, p 277–298

    Article  CAS  Google Scholar 

  9. T. Kimoto, O. Takemura, H. Matsunami, T. Nakata, and M. Inoue, Al+ and B+ Implantations into 6H-SiC Epilayers and Application to PN Junction Diodes, J. Electron. Mater., 1998, 27, p 358–364

    Article  CAS  Google Scholar 

  10. R. Hou, Z. ** Without Bias Power for Introduction of Fe, Au, Al, Ga, Sn and In into Si, Appl. Phys. A, 2016, 122, p. 1013.

  11. R. Hou, X. Fang, L. Li, S. Li, W. Song, X. ** Si, Mg and Ca into GaN Based on Plasma Stimulated Room-Temperature Diffusion, Appl. Phys. A, 2017, 123, p. 393.

  12. J.R. Conrad, J.L. Radtke, R.A. Dodd, F.J. Worzala, and N.C. Tran, Plasma Source Ion-Implantation Technique for Surface Modification of Materials, J. Appl. Phys., 1987, 62, p 4591–4596

    Article  CAS  Google Scholar 

  13. A. Anders, From Plasma Immersion Ion Implantation to Deposition: A Historical Perspective on Principles and Trends, Surf. Coat. Technol., 2002, 156, p 3–12

    Article  CAS  Google Scholar 

  14. A. Anders, Metal Plasma Immersion Ion Implantation and Deposition: A Review, Surf. Coat. Technol., 1997, 93, p 158–167

    Article  CAS  Google Scholar 

  15. J. Pelletier and A. Anders, Plasma-Based Ion Implantation and Deposition: A Review of Physics, Technology, and Applications, IEEE Trans. Plasma Sci., 2005, 33(6), p 1944–1959

    Article  CAS  Google Scholar 

  16. P.K. Chu, Contamination Issues in Hydrogen Plasma Immersion Ion Implantation Of Silicon—A Brief Review, Surf. Coat. Technol., 2002, 156, p 244–252

    Article  CAS  Google Scholar 

  17. F. Yuting, X. **, N. Sun, C. Li, Y. An, and J. Liu, Effects of Ni Do** and Structural Defects on Magnetic Properties of Annealed SiC Films, Superlattices Microstruct., 2016, 96, p 267–272

    Article  Google Scholar 

  18. Y. Dou, H. **, M. Cao, X. Fang, Z. Hou, and S. Dan Li, Agathopoulos, Structural Stability, Electronic and Optical Properties of Ni-Doped 3C–SiC by First Principles Calculation, J. Alloy. Compd., 2011, 509, p 6117–6122

    Article  CAS  Google Scholar 

  19. J. Crofton, P.G. McMullin, J.R. Williams, and M.J. Bozack, High-Temperature Ohmic Contact to n-type 6H-SiC Using Nickel, J. Appl. Phys., 1995, 77, p 1317–1319

    Article  CAS  Google Scholar 

  20. G. Oskam, P.C. Searson, and M.W. Cole, Fabrication of n-type 4H–SiC/Ni Junctions Using Electrochemical Deposition, Appl. Phys. Lett., 2000, 76, p 1300–1302

    Article  CAS  Google Scholar 

  21. G.R. Fisher and P. Barnes, Towards a Unified View of Polytypism in Silicon Carbide, Phil. Mag. B, 1990, 61, p 217–236

    Article  CAS  Google Scholar 

  22. A. Lohrmann, B.C. Johnson, J.C. McCallum, and S. Castelletto, A Review on Single Photon Sources in Silicon Carbide, Rep. Prog. Phys. 2017, 80, p. 034502.

  23. S. Oswald and H. Wirth, Core-Level Shifts at B- and Al-Doped 6H-SiC Studied by XPS, Surf. Interface Anal., 1999, 27, p 136–141

    Article  CAS  Google Scholar 

  24. E. Stamate, Status and Challenges in Electrical Diagnostics of Processing Plasmas, Surf. Coat. Technol., 2014, 260, p 401–410

    Article  CAS  Google Scholar 

  25. S. Soloviev, Y. Gao, X. Wang, and T. Sudarshan, Boron Diffusion into 6H-SiC Through Graphite Mask, J. Electron. Mater., 2001, 30(3), p 224–227

    Article  CAS  Google Scholar 

  26. R. Hou, L. Li, X. Fang, Z. **e, S. Li, W. Song, R. Huang, J. Zhang, Z. Huang, Q. Li, W. Xu, E. Fu, and G.G. Qin, Ambient-Temperature Diffusion and Gettering of Pt Atoms in GaN with Surface Defect Region Under 60Co Gamma or MeV Electron Irradiation, Nucl. Instrum. Methods Phys. Res. Sect. B, 2018, 414, p 74–78.

  27. J.D. Weeks, J.C. Tully, and L.C. Kimerling, Theory of Recombination-Enhanced Defect Reactions in Semiconductors, Phys. Rev. B, 1975, 12, p 3286–3292

    Article  CAS  Google Scholar 

  28. T. Wada and K. Yasuda, Mechanism of Electron-Beam Do** in Semiconductors, Phys. Rev. B, 1996, 53, p 4770–4781

    Article  CAS  Google Scholar 

  29. R.B. Bird, W.E. Stewart, and E.N. Lightfoot, Transport Phenomena, Wiley, New York, 1976

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant Numbers 91433119 and 11674004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, R., Li, L., Fang, X. et al. Ultra-Shallow Do** B, Mg, Ni, Cu, Mn, Cr and Fe into SiC with Very High Surface Concentrations Based on Plasma Stimulated Room-Temperature Diffusion. J. of Materi Eng and Perform 28, 162–168 (2019). https://doi.org/10.1007/s11665-018-3782-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3782-z

Keywords

Navigation