Log in

The Impact of Interfacial Recombination on Hysteresis in Back-Contact Perovskite Solar Cells

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A back-contact perovskite solar cell (BC-PSC) has been simulated. The J–V curves were calculated with different degrees of the interfacial recombination, and the characteristics of basic physical phenomena inside the device, including carrier concentration distribution, ion concentration distribution, electric potential change, and carrier recombination rate, have also been investigated. It was found that the effect of the perovskite layer’s upper surface (US) interfacial recombination on the hysteresis phenomenon is greater than that of the perovskite layer’s lower surface (LS) interfacial recombination. In addition, it has been found that the inverted hysteresis phenomenon occurs in the BC-PSC with the LS interfacial recombination. Moreover, the hysteresis loops corresponding to the US interfacial recombination of the perovskite layer were close to the short-circuit current side, and the hysteresis loops corresponding to the LS interfacial recombination of the perovskite layer were close to the open-circuit voltage side. These results indicate that both of the US and LS interface recombinations in the BC-PSC play a crucial role in the hysteresis phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. M. Degani, Q. An, M. Albaladejo-Siguan, Y.J. Hofstetter, C. Cho, F. Paulus, G. Grancini, and Y. Vaynzof, 23.7% Efficient inverted perovskite solar cells by dual interfacial modification. Sci. Adv. 7, 7930 (2021).

    Article  Google Scholar 

  2. D.P. Mcmeekin, G. Sadoughi, W. Rehman, G.E. Eperon, M. Saliba, M.T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M.B. Johnston, L.M. Herz, and H.J. Snaith, A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee, J. Kim, M.J. Paik, Y.K. Kim, K.S. Kim, M.G. Kim, T.J. Shin, and S., Il Seok, Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature. 598, 444 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. C. Zuo, H.J. Bolink, H. Han, J. Huang, D. Cahen, and L. Ding, Advances in perovskite solar cells. Adv. Sci. 3, 1500324 (2016).

    Article  Google Scholar 

  5. https://www.nrel.gov/pv/cell-efficiency.html.

  6. R. Ji, Z. Zhang, Y.J. Hofstetter, R. Buschbeck, C. Hänisch, F. Paulus, and Y. Vaynzof, Perovskite phase heterojunction solar cells. Nat. Energy 7, 1170 (2022).

    Article  CAS  Google Scholar 

  7. Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, and J. You, Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460 (2019).

    Article  CAS  Google Scholar 

  8. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. W.S. Yang, B. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, and S.I. Seok, Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356, 1376 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. H. Tan, A. Jain, O. Voznyy, X. Lan, D.A.F. Garcia, J.Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li, L.N. Quan, Y. Zhao, Z.H. Lu, Z. Yang, S. Hoogland, and E.H. Sargent, Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. J. **ang, Y. Li, F. Huang, and D. Zhong, Inverted hysteresis in MAPbI3 perovskite solar cells induced by presetting bias voltage. J. Phys. D, Appl. Phys. 52, 315103 (2019).

    Article  CAS  Google Scholar 

  12. B. Conings, L. Baeten, C. De Dobbelaere, J. D’Haen, J. Manca, and H. Boyen, Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach. Adv. Mater. 26, 2041 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Z. Fang, Q. Zeng, C. Zuo, L. Zhang, H. **ao, M. Cheng, F. Hao, Q. Bao, L. Zhang, Y. Yuan, W. Wu, D. Zhao, Y. Cheng, H. Tan, Z. **ao, S. Yang, F. Liu, Z. **, J. Yan, and L. Ding, Perovskite-based tandem solar cells. Sci. Bull. 66, 621 (2021).

    Article  CAS  Google Scholar 

  14. Z. Wang, X. Zhu, S. Zuo, M. Chen, C. Zhang, C. Wang, X. Ren, Z. Yang, Z. Liu, X. Xu, Q. Chang, S. Yang, F. Meng, Z. Liu, N. Yuan, J. Ding, S.F. Liu, and D. Yang, 27%-efficiency four-terminal perovskite/silicon tandem solar cells by sandwiched gold nanomesh. Adv. Funct. Mater. 30, 1908298 (2020).

    Article  CAS  Google Scholar 

  15. Q. Hou, D. Bacal, A.N. Jumabekov, W. Li, Z. Wang, X. Lin, S.H. Ng, B. Tan, Q. Bao, A.S.R. Chesman, Y. Cheng, and U. Bach, Back-contact perovskite solar cells with honeycomb-like charge collecting electrodes. Nano Energy 50, 710 (2018).

    Article  CAS  Google Scholar 

  16. K.J. Rietwyk, X. Lin, B. Tan, T. Warnakula, P. Holzhey, B. Zhao, S. Deng, M.A. Surmiak, J. Jasieniak, and U. Bach, Ideality factor map** of back-contact perovskite solar cells. Adv. Energy Mater. 13, 2200796 (2023).

    Article  CAS  Google Scholar 

  17. H. Sun, S. Gillespie, S.A. Rigter, J.S. van der Burgt, K. Datta, and E.C. Garnett, Spectroscopic analysis for the identification of loss mechanisms in back-contact perovskite solar Cells. Adv. Mater. Technol. 8, 2300241 (2023).

    Article  CAS  Google Scholar 

  18. Z. Yang, W. Yang, X. Yang, J.C. Greer, J. Sheng, B. Yan, and J. Ye, Device physics of back-contact perovskite solar cells. Energy Environ. Sci. 13, 1753 (2020).

    Article  CAS  Google Scholar 

  19. E.O. Shalenov, Y.S. Seitkozhanov, C. Valagiannopoulos, A. Ng, K.N. Dzhumagulova, and A.N. Jumabekov, Performance evaluation of different designs of back-contact perovskite solar cells. Sol. Energy Mater. Sol. Cells 234, 111426 (2022).

    Article  CAS  Google Scholar 

  20. B. Zhao, L.V. Gillan, A.D. Scully, A. Chesman, B. Tan, X. Lin, J. Liu, K.J. Rietwyk, S. Deng, C. Bailey, Y.B. Cheng, D.R. Mccamey, and U. Bach, Enhanced carrier diffusion enables efficient back-contact perovskite photovoltaics. Angew. Chem. Int. Ed. Engl. 62, e202218174 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. X. Lin, J. Lu, S.R. Raga, D.P. Mcmeekin, Q. Ou, A.D. Scully, B. Tan, A.S.R. Chesman, S. Deng, B. Zhao, Y.B. Cheng, and U. Bach, Balancing charge extraction for efficient back-contact perovskite solar cells by using an embedded mesoscopic architecture. Adv. Energy Mater. 11, 2100053 (2021).

    Article  CAS  Google Scholar 

  22. A.N. Jumabekov, E. Della Gaspera, Z.Q. Xu, A.S.R. Chesman, J. van Embden, S.A. Bonke, Q. Bao, D. Vak, and U. Bach, Back-contacted hybrid organic—inorganic perovskite solar cells. J. Mater. Chem. C. 4, 3125 (2016).

    Article  CAS  Google Scholar 

  23. S. Deng, B. Tan, A.S.R. Chesman, J. Lu, D.P. Mcmeekin, Q. Ou, A.D. Scully, S.R. Raga, K.J. Rietwyk, A. Weissbach, B. Zhao, N.H. Voelcker, Y. Cheng, X. Lin, and U. Bach, Back-contact perovskite solar cell fabrication via microsphere lithography. Nano Energy 102, 107695 (2022).

    Article  CAS  Google Scholar 

  24. T. Chen, Z. Sun, M. Liang, and S. Xue, Correlating hysteresis phenomena with interfacial charge accumulation in perovskite solar cells. Phys. Chem. Chem. Phys. 22, 245 (2020).

    Article  CAS  Google Scholar 

  25. W. Tress, N. Marinova, T. Moehl, S.M. Zakeeruddin, M.K. Nazeeruddin, and M. Grätzel, Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ. Sci. 8, 995 (2015).

    Article  CAS  Google Scholar 

  26. Z. Wang, B. Cai, D. **n, M. Zhang, and X. Zheng, Modulating J-V hysteresis of planar perovskite solar cells and mini-modules via work function engineering. J. Energy Chem. 85, 19 (2023).

    Article  CAS  Google Scholar 

  27. D. Wu, Z. Ai, S. Li, J. Chen, Y. Zhao, T. Ma, H. Wang, C. Wang, and X. Li, Efficient flexible perovskite solar cells with reduced hysteresis employing cobalt nitrate treated SnO2. Sol. Rrl. 6, 2200210 (2022).

    Article  CAS  Google Scholar 

  28. J. Haruyama, K. Sodeyama, L. Han, and Y. Tateyama, First-principles study of ion diffusion in perovskite solar cell sensitizers. J. Am. Chem. Soc. 137, 10048 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. G. Richardson, S.E. O’Kane, R.G. Niemann, T.A. Peltola, J.M. Foster, P.J. Cameron, and A.B. Walker, Can slow-moving ions explain hysteresis in the current–voltage curves of perovskite solar cells? Energy Environ. Sci. 9, 1476 (2016).

    Article  CAS  Google Scholar 

  30. J. Wei, Y. Zhao, H. Li, G. Li, J. Pan, D. Xu, Q. Zhao, and D. Yu, Hysteresis analysis based on the ferroelectric effect in hybrid perovskite solar cells. J. Phys. Chem. Lett. 5, 3937 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. H.J. Snaith, A. Abate, J.M. Ball, G.E. Eperon, T. Leijtens, N.K. Noel, S.D. Stranks, J.T. Wang, K. Wojciechowski, and W. Zhang, Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. H.S. Kim, I. Mora-Sero, V. Gonzalez-Pedro, F. Fabregat-Santiago, E.J. Juarez-Perez, N.G. Park, and J. Bisquert, Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nat. Commun. 4, 2242 (2013).

    Article  PubMed  Google Scholar 

  33. Y. Shao, Z. **ao, C. Bi, Y. Yuan, and J. Huang, Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. S. van Reenen, M. Kemerink, and H.J. Snaith, Modeling anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 6, 3808 (2015).

    Article  PubMed  Google Scholar 

  35. P. Calado, A.M. Telford, D. Bryant, X. Li, J. Nelson, B.C.O. Regan, and P.R.F. Barnes, Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis. Nat. Commun. 7, 13831 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. T. Zhang, H. Chen, Y. Bai, S. **ao, L. Zhu, C. Hu, Q. Xue, and S. Yang, Understanding the relationship between ion migration and the anomalous hysteresis in high-efficiency perovskite solar cells: A fresh perspective from halide substitution. Nano Energy 26, 620 (2016).

    Article  CAS  Google Scholar 

  37. Z. Ai, D. Wu, T. Ma, Y. Zhao, Y. An, C. Wang, and X. Li, Physics, Simulation, and Experiment of Perovskite Solar Cells with Addressing Hysteresis Effect. Sol. Rrl. 6, 2200606 (2022).

    Article  CAS  Google Scholar 

  38. J. Huang, Y. Yang, W. Hsu, E. Chang, M. Chen, and Y. Wu, Influences of dielectric constant and scan rate on hysteresis effect in perovskite solar cell with simulation and experimental analyses. Sci. Rep. 12, 7927 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. H. Jeon, S.G. Kim, J. Park, S.H. Kim, E. Park, J. Kim, and H.Y. Yu, Hysteresis Modulation on Van der Waals-Based Ferroelectric Field-Effect Transistor by Interfacial Passivation Technique and Its Application in Optic Neural Networks. Small 16, 2004371 (2020).

    Article  CAS  Google Scholar 

  40. E.Y.C.F. Ting-En Hsieh, S.S.A.C. Shin-Chien Liu, Gate recessed quasi-normally OFF Al2O3/AlGaN/GaN MIS-HEMT with low threshold voltage hysteresis using PEALD AlN interfacial passivation layer. IEEE Electron Device Lett. 35, 732 (2014).

  41. J. **ang, Y. Li, F. Huang, and D. Zhong, Effect of interfacial recombination, bulk recombination and carrier mobility on the J-V hysteresis behaviors of perovskite solar cells: a drift-diffusion simulation study. Phys. Chem. Chem. Phys. 21, 17836 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Z. Zhang, L. Shen, S. Wang, L. Zheng, D. Li, Z. Li, Y. **ng, K. Guo, L. **e, and Z. Wei, Halogenated hole-transport molecules with enhanced isotropic coordination capability enable improved interface and light stability of perovskite solar cells. Adv. Energy Mater. 13, 2204362 (2023).

    Article  CAS  Google Scholar 

  43. X. Hu, H. Wang, M. Wang, and Z. Zang, Interfacial defects passivation using fullerene-polymer mixing layer for planar-structure perovskite solar cells with negligible hysteresis. Sol. Energy 206, 816 (2020).

    Article  CAS  Google Scholar 

  44. W. Clarke, M.V. Cowley, M.J. Wolf, P. Cameron, A. Walker, and G. Richardson, Inverted hysteresis as a diagnostic tool for perovskite solar cells: Insights from the drift-diffusion model. J. Appl. Phys. 133, 095001 (2023).

    Article  CAS  Google Scholar 

  45. P. Liu, W. Wang, S. Liu, H. Yang, and Z. Shao, Fundamental understanding of photocurrent hysteresis in perovskite solar cells. Adv. Energy Mater. 9, 1803017 (2019).

    Article  Google Scholar 

  46. C. Yang, X. Shan, and T. **e, Insights of hysteresis behaviors in perovskite solar cells from a mixed drift-diffusion model coupled with recombination. Photonics. 7, 47 (2020).

    Article  CAS  Google Scholar 

  47. Y. Wang, J. Wang, S. Lu, and L. Ji, Influence of interfacial recombination on hysteresis in the J-V curves of TiO2/MAPbI3/Spiro-OMeTAD solar cells. Phys. Scr. 98, 085910 (2023).

    Article  Google Scholar 

  48. A.A. Tabrizi, H. Saghaei, M.A. Mehranpour, and M. Jahangiri, Enhancement of absorption and effectiveness of a perovskite thin-film solar cell embedded with gold nanospheres. Plasmonics 16, 747 (2021).

    Article  CAS  Google Scholar 

  49. S.N. Habisreutinger, N.K. Noel, and H.J. Snaith, Hysteresis index: a figure without merit for quantifying hysteresis in perovskite solar cells. Acs Energy Lett. 3, 2472 (2018).

    Article  CAS  Google Scholar 

  50. F. Wang, A. Shimazaki, F. Yang, K. Kanahashi, K. Matsuki, Y. Miyauchi, T. Takenobu, A. Wakamiya, Y. Murata, and K. Matsuda, Highly efficient and stable perovskite solar cells by interfacial engineering using solution-processed polymer layer. J. Phys. Chem. C. 121, 1562 (2017).

    Article  CAS  Google Scholar 

  51. D.M. Bacal, N.N. Lal, A.N. Jumabekov, Q. Hou, Y. Hu, J. Lu, A.S.R. Chesman, and U. Bach, Solution-processed antireflective coating for back-contact perovskite solar cells. Opt. Express 28, 12650 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. W. Yang, Z. Yang, C. Shou, J. Sheng, B. Yan, and J. Ye, Optical design and optimization for back-contact perovskite solar cells. Sol. Energy 201, 84 (2020).

    Article  CAS  Google Scholar 

  53. Y. Lin, B. Chen, F. Zhao, X. Zheng, Y. Deng, Y. Shao, Y. Fang, Y. Bai, C. Wang, and J. Huang, Matching charge extraction contact for wide-bandgap perovskite solar cells. Adv. Mater. 29, 1700607 (2017).

    Article  Google Scholar 

  54. N.K. Noel, A. Abate, S.D. Stranks, E.S. Parrott, V.M. Burlakov, A. Goriely, and H.J. Snaith, Enhanced photoluminescence and solar cell performancevia lewis base passivation of organic-inorganic lead halide perovskites. ACS Nano 8, 9815 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Z. Li, L. Wang, R. Liu, Y. Fan, H. Meng, Z. Shao, G. Cui, and S. Pang, Spontaneous interface ion exchange: passivating surface defects of perovskite solar cells with enhanced photovoltage. Adv. Energy Mater. 9, 1902142 (2019).

    Article  CAS  Google Scholar 

  56. Z. Wang, Q. Lin, F.P. Chmiel, N. Sakai, L.M. Herz, and H.J. Snaith, Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2, 17135 (2017).

    Article  CAS  Google Scholar 

  57. J. Gong, H. Wei, Y. Ni, S. Zhang, Y. Du, and W. Xu, Methylammonium halide-doped perovskite artificial synapse for light-assisted environmental perception and learning. Mater. Today Phys. 21, 100540 (2021).

    Article  CAS  Google Scholar 

  58. M. Vasilopoulou, A.R.B. Mohd Yusoff, Y. Chai, M. Kourtis, T. Matsushima, N. Gasparini, R. Du, F. Gao, M.K. Nazeeruddin, T.D. Anthopoulos, Y. Noh, Neuromorphic computing based on halide perovskites. Nat. Electron. 6, 949 (2023).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian Ji.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interests, we do not have any possible conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1079 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, P., Chang, Y., Lu, S. et al. The Impact of Interfacial Recombination on Hysteresis in Back-Contact Perovskite Solar Cells. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-11308-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-11308-1

Keywords

Navigation