Log in

Iron Oxychloride as the Cathode Material for Sodium Ion Batteries

  • Topical Collection: High-Energy Battery Materials
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Iron oxychloride (FeOCl) with a layered structure may be a potential cathode material for rechargeable sodium ion batteries, due to its large interlayer spacing and high theoretical capacity. Here, the FeOCl material is employed as the cathode material for sodium ion batteries for the first time. Its morphology, electrochemical sodium storage performance, and reaction mechanisms are systematically investigated. The as-prepared FeOCl cathode exhibits a high discharge capacity of 321 mAh g−1 in the voltage range of 1.4–4.0 V (vs. Na/Na+) at 10 mA g−1 during the first cycle; however, the discharge capacity fades to 69 mAh g−1 after 30 cycles due to the large volume change of FeOCl and phase separation during cycling. The intercalation and conversion reaction mechanism of FeOCl during reversible sodium ion storage is demonstrated by the results of energy-dispersive spectroscopy, x-ray diffraction, and x-ray photoelectron spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K. Chayambuka, G. Mulder, D. Danilov, and P. Notten, From li-ion batteries toward na-ion chemistries: challenges and opportunities. Adv. Energy Mater. 10, 38 (2020).

    Article  Google Scholar 

  2. C. Li, C. Zheng, F. Cao, Y. Zhang, and X. **a, The development trend of graphene derivatives. J. Electron. Mater. 51, 4107 (2022).

    Article  CAS  Google Scholar 

  3. Q. Liu, Z. Hu, M. Chen, C. Zou, H. **, S. Wang, S. Chou, Y. Liu, and S. Dou, The cathode choice for commercialization of sodium-ion batteries: layered transition metal oxides versus prussian blue analogs. Adv. Funct. Mater. 30, 14 (2020).

    Google Scholar 

  4. S. Li, Y. Sun, Y. Pang, S. **a, T. Chen, H. Sun, S. Zheng, and T. Yuan, Recent developments of layered transition metal oxide cathodes for sodium-ion batteries toward desired high performance. Asia-Pac. J. Chem. Eng. 17, e2762 (2022).

    Article  CAS  Google Scholar 

  5. X. Hong, K. Liang, X. Huang, Y. Ren, and H. Wang, Improved na storage performance of Na3V2(PO4)3 cathode material for sodium-ion batteries by K-Cl co-do**. J. Phys. D Appl. Phys. 54, 10 (2020).

    Google Scholar 

  6. T. Yuan, Y. Chen, X. Gao, R. Xu, Z. Zhang, X. Chen, and L. Cui, Research progress of Prussian blue and its analogs as high-performance cathode nanomaterials for sodium-ion batteries. Small Methods (2023). https://doi.org/10.1002/smtd.202301372.

    Article  PubMed  Google Scholar 

  7. R. Rajagopalan, Y. Tang, C. Jia, A. Ji, and H. Wang, Understanding the sodium storage mechanisms of organic electrodes in sodium ion batteries: issues and solutions. Energy Environ. Sci. 13, 1568 (2020).

    Article  CAS  Google Scholar 

  8. I. Moeez, D. Susanto, W. Chang, H. Lim, and K. Chung, Artificial cathode electrolyte interphase by functional additives toward long-life sodium-ion batteries. Chem. Eng. J. 425, 130547 (2021).

    Article  CAS  Google Scholar 

  9. X. Zhao, Z. Zhao-Karger, F. Maximilian, and X. Shen, Halide-based materials and chemistry for rechargeable batteries. Angew. Chem. Int. Ed. 59, 5902 (2020).

    Article  CAS  Google Scholar 

  10. R. Yang, T. Yu, and X. Zhao, Polypyrrole-coated iron oxychloride cathode material with improved cycling stability for chloride ion batteries. J. Alloys Compd. 788, 407 (2019).

    Article  CAS  Google Scholar 

  11. X. Yang, X. Xu, J. Xu, and Y. Han, Iron oxychloride (FeOCl): an efficient fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants. J. Am. Chem. Soc. 135, 16058 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. X. Zhao, S. Ren, M. Bruns, and F. Maximilian, Chloride ion battery: a new member in the rechargeable battery family. J. Power. Sources 245, 706 (2014).

    Article  CAS  Google Scholar 

  13. P. Gao, C. Wall, L. Zhang, M. Reddy, and F. Maximilian, Vanadium oxychloride as electrode material for sodium ion batteries. Electrochem. Commun. 60, 180 (2015).

    Article  CAS  Google Scholar 

  14. J. Sun, W. Tu, C. Chen, A. Plewa, H. Ye, L. He, T. Wu, K. Zeng, and L. Sun, Chemical bonding construction of reduced graphene oxide-anchored few-layer bismuth oxychloride for synergistically improving sodium-ion storage. Chem. Mater. 31, 7311 (2019).

    Article  CAS  Google Scholar 

  15. Y. Lin, W. Feng, Z. Li, T. Xu, and H. Fei, Facile synthesis of phase-pure Sb8O11Cl2 microrods as anode materials for sodium-ion batteries with high capacity. Ionics 23, 3197 (2017).

    Article  CAS  Google Scholar 

  16. C. Zhao, H. Zhang, W. Si, and H. Wu, Mass production of two-dimensional oxides by rapid heating of hydrous chlorides. Nat. Commun. 7, 12543 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. T. Yu, Q. Li, X. Zhao, H. **a, L. Ma, J. Wang, Y. Meng, and X. Shen, Nanoconfined iron oxychloride material as a high-performance cathode for rechargeable chloride ion batteries. ACS Energy Lett. 2, 2341 (2017).

    Article  CAS  Google Scholar 

  18. T. Yu, R. Yang, X. Zhao, and X. Shen, Polyaniline-intercalated FeOCl cathode material for chloride-ion batteries. ChemElectroChem 6, 1761 (2019).

    Article  CAS  Google Scholar 

  19. P. Liu, Z. Qiu, F. Cao, Y. Zhang, X. He, S. Shen, X. Liang, M. Chen, C. Wang, W. Wan, Y. **a, X. **a, and W. Zhang, Liquid-source plasma technology for construction of dual bromine-fluorine-enriched interphases on lithium metal anodes with enhanced performance. J. Mater. Sci. Technol. 177, 68 (2024).

    Article  CAS  Google Scholar 

  20. T. Yu, X. Zhao, L. Ma, and X. Shen, Intercalation and electrochemical behaviors of layered FeOCl cathode material in chloride ion battery. Mater. Res. Bull. 96, 485 (2017).

    Article  CAS  Google Scholar 

  21. Z. Xu, S. Yao, J. Cui, L. Zhou, and J. Kim, Atomic scale, amorphous FeOx/carbon nanofiber anodes for li-ion and na-ion batteries. Energy Storage Mater. 8, 10 (2017).

    Article  Google Scholar 

  22. S. Lee, Y. Kim, J. Park, D. Susanto, J. Han, and K. Chung, Mechanical activation of graphite for na-ion battery anodes: unexpected reversible reaction on solid electrolyte interphase via x-ray analysis. Adv. Sci. (2024). https://doi.org/10.1002/advs.202401022.

    Article  Google Scholar 

  23. D. Qiu, W. Zhao, B. Zhang, M.T. Ahsan, and Y. Hou, Ni-single atoms modification enabled kinetics enhanced and ultra-stable hard carbon anode for sodium-ion batteries. Adv. Energy Mater. (2024). https://doi.org/10.1002/aenm.202400002.

    Article  Google Scholar 

  24. X. Zhao, Z. Zhao, M. Yang, H. ** polymer cathode material for the chloride ion battery. ACS. Appl. Mater. Inter. 9, 2535 (2017).

    Article  CAS  Google Scholar 

  25. I. Moeez, H. Lim, J. Park, H. Jung, and K. Chung, Electrochemically induced metallization of NaCl: use of the main component of salt as a cost-effective electrode material for sodium-ion batteries. ACS Energy Lett. 4, 2060 (2019).

    Article  CAS  Google Scholar 

  26. G. Zhu, P. Liang, C. Huang, and H. Dai, Shedding light on rechargeable Na/Cl2 battery. Proc. Natl. Acad. Sci. U. S. A. 39, e2310903120 (2023).

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liqun Ma or **angyu Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1175 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Shen, Y., Ma, L. et al. Iron Oxychloride as the Cathode Material for Sodium Ion Batteries. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-11284-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-11284-6

Keywords

Navigation