Log in

Facile Synthesis and Characterization of Low-Dimensional Layered Y2O3 Nanosheets by a Rapid Heating Route

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Low-dimensional yttrium oxide (Y2O3) nanostructures have garnered significant research interest due to their intriguing properties arising from the dimensional effect and the modulation of the band structure. However, the simple preparation of Y2O3 nanosheets is rarely investigated due to the inherent limitations posed by the counterpart bulk cubic or monoclinic crystal structure. Herein, the low-dimensional layered Y2O3 nanosheets are prepared by a facile route of rapid heating followed by centrifugation, in which its corresponding hydrous-chloride compound is used as the sole reagent. The formation stages of layered Y2O3 nanosheets and corresponding mechanisms are elucidated in detail. The x-ray diffraction results confirm that the intermediate product after rapid heating is yttrium oxychloride (YOCl), which converts to the single-phase Y2O3 with a 2D layered phase after centrifugation. In addition, the obtained Y2O3 nanosheets possess a direct optical bandgap of 5.49 eV, and thus may hold promise for use in electronic applications. This research provides a facile and low-cost method for the preparation of other low-dimensional nanosheets with similar structures.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Original data are available from the corresponding author on reasonable request.

References

  1. B. Madhura, E. Vetrivendan, C.J. Rao, and S. Ningshen, Evaluation of oxidation resistant SiC-ZrB2 composite interlayer for plasma sprayed Y2O3 coating over graphite. Corros. Sci. 190, 109645 (2021).

    Article  Google Scholar 

  2. A. Meijerink, Emerging substance class with narrow-band blue/green-emitting rare earth phosphors for backlight display application. Sci. China Mater. 62(1), 146–148 (2019).

    Article  Google Scholar 

  3. G. Kimmel, R.Z. Shneck, W. Lojkowski, Z. Porat, T. Chudoba, D. Mogilyanski, S. Gierlotka, V. Ezersky, and J. Zabicky, Phase stability of rare earth sesquioxides with grain size controlled in the nanoscale. J. Am. Ceram. Soc. 102(7), 3829–3835 (2019).

    Article  CAS  Google Scholar 

  4. Y. Pan, W.Q. Li, N.N. Wei, Y.M. So, X.L. Lai, Y. Li, K. Jiang, and G.H. He, Highly active rare-earth metal catalysts for hetero selective ring-opening polymerization of racemic lactide. Dalton Trans. 48(25), 9079–9088 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. M.E. De Vasconcellos, C.A.S. Queiroz, and A. Abrão, Sequential separation of the yttrium-heavy rare earths by fractional hydroxide precipitation. J. Alloys Compd. 374, 405–407 (2004).

    Article  Google Scholar 

  6. J. Shruthi, N. Jayababu, P. Ghosal, and R.M.V. Ramana, Ultrasensitive sensor based on Y2O3-In2O3 nanocomposites for the detection of methanol at room temperature. Ceram. Int. 45(17), 21497–21504 (2019).

    Article  CAS  Google Scholar 

  7. S. Delice, M. Isik, and N.M. Gasanly, Effect of heating rate on thermoluminescence characteristics of Y2O3 nanoparticles. J. Lumin. 212, 233–237 (2019).

    Article  CAS  Google Scholar 

  8. Y. Nigara, Measurement of the optical constants of yttrium oxide. Jpn. J. Appl. Phys. 7(4), 404–408 (1968).

    Article  CAS  Google Scholar 

  9. V.H. Mudavakkat, V.V. Atuchin, V.N. Kruchinin, A. Kayani, and C.V. Ramana, Structure, morphology and optical properties of nanocrystalline yttrium oxide (Y2O3) thin films. Opt. Mater. 34(5), 893–900 (2012).

    Article  CAS  Google Scholar 

  10. T. Saravanan, P. Anandan, M. Azhagurajan, M. Arivanandhan, K. Pazhanivel, Y. Hayakawa, and R. Jayavel, Synthesis and characterization of Y2O3-reduced graphene oxide nanocomposites for photocatalytic applications. Mater. Res. Express. 3(7), 75502 (2016).

    Article  Google Scholar 

  11. L. Zhang, X.L. Hou, M. Liu, Y. Lv, and X.D. Hou, Controllable synthesis of Y2O3 microstructures for application in cataluminescence gas sensing. Chem. Eur. J. 17(25), 7105–7111 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. G. Jia, H.P. You, Y.H. Song, Y.J. Huang, M. Yang, and H.G. Zhang, Facile synthesis and luminescence of uniform Y2O3 hollow spheres by a sacrificial template route. Inorg. Chem. 49(17), 7721–7725 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. S.Y. Zeng, K.B. Tang, T.W. Li, and Z.H. Liang, 3D flower-like Y2O3: Eu3+ nanostructures: template-free synthesis and its luminescence properties. J. Colloid Interface Sci. 316(2), 921–929 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. A. Gupta, T. Sakthivel, and S. Seal, Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 73, 44–126 (2015).

    Article  CAS  Google Scholar 

  15. C.S. Zhao, H.T. Zhang, W.J. Si, and H. Wu, Mass production of two-dimensional oxides by rapid heating of hydrous chlorides. Nat. Commun. 7, 1–8 (2016).

    Article  Google Scholar 

  16. N. Rafi and A.N. Rosli, The band structure of a rare earth element of promethium (III) oxide (Pm2O3) calculated using density functional theory. J. Phys. Conf. Ser. 1090, 012005 (2018).

    Article  Google Scholar 

  17. J.P. Gaviría and A.E. Bohé, The Kinetics of the chlorination of yttrium oxide. Metall. Mater. Trans. B 40(1), 45–53 (2009).

    Article  Google Scholar 

  18. S.S. Park and S.H. Cho, Spectral-converting behaviors of Er3+ and Er3+-Yb3+ doped YOCl Phosphors. J. Alloys Compd. 584, 524–529 (2014).

    Article  CAS  Google Scholar 

  19. S. Delice, M. Isik, and N.M. Gasanly, Low temperature thermoluminescence behavior of Y2O3 nanoparticles. J. Rare Earths 37(1), 19–23 (2019).

    Article  CAS  Google Scholar 

  20. Y. Li, X.T. Wei, and M. Yin, Synthesis and upconversion luminescent properties of Er3+ doped and Er3+-Yb3+ co-doped GdOCl powders. J. Alloys Compd. 509, 9865–9868 (2011).

    Article  CAS  Google Scholar 

  21. S. Petzold, E. Piros, R. Eilhardt, A. Zintler, T. Vogel, N. Kaiser, A. Radetinac, P. Komissinskiy, E. Jalaguier, E. Nolot, C.C. Nicolle, C. Wenger, L. Molina-Luna, E. Miranda, and L. Alff, Tailoring the switching dynamics in yttrium oxide-based RRAM devices by oxygen engineering: from digital to multi-Level quantization toward analog switching. Adv. Electron. Mater. 6(11), 2000439 (2020).

    Article  CAS  Google Scholar 

  22. R.M. Jafer, E. Coetsee, A. Yousif, R.E. Kroon, O.M. Ntwaeaborwa, and H.C. Swart, X-ray photoelectron spectroscopy and luminescent properties of Y2O3:Bi3+ phosphor. Appl. Surf. Sci. 332, 198–204 (2015).

    Article  CAS  Google Scholar 

  23. Y.C. Jung, S. Seong, T. Lee, I.S. Park, and J. Ahn, Resistive switching characteristics of atomic-layer-deposited Y2O3 insulators with deposition temperature. J. Nanosci. Nanotechnol. 15(10), 7586–7589 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. I.S. Park, Y.C. Jung, S. Seong, J. Ahn, J. Kang, W. Noh, and C.L. Matras, Atomic layer deposition of Y2O3 films using heteroleptic liquid (iPrCp)2Y(iPr-amd) precursor. J. Mater. Chem. C 2(43), 9240–9247 (2014).

    Article  CAS  Google Scholar 

  25. W.Q. Hu, L.M. Yu, Z.Q. Ma, and Y.C. Liu, W-Y2O3 composite nanopowders prepared by freeze-drying method and its sintering characteristics. J. Alloys Compd. 806, 127–135 (2019).

    Article  CAS  Google Scholar 

  26. N. Liu, Z. Dong, Z.Q. Ma, L.M. Yu, C. Li, C.X. Liu, Q.Y. Guo, and Y.C. Liu, Eliminating bimodal structures of W-Y2O3 composite nanopowders synthesized by wet chemical method via controlling reaction conditions. J. Alloys Compd. 774, 122–128 (2019).

    Article  CAS  Google Scholar 

  27. T. Larbi, K.E. El-Kelany, K. Doll, and M. Amlouk, Efficient ab initio quantum mechanical simulations of structural stability and vibrational properties of bulk, monolayer and (n,0) nanotubes: Yttrium sesquioxide Y2O3. J. Raman Spectrosc. 51(2), 1–11 (2020).

    Article  Google Scholar 

  28. A. Ubaldini and M.M. Carnasciali, Raman characterization of powder of cubic RE2O3 (RE=Nd, Gd, Dy, Tm, and Lu), Sc2O3 and Y2O3. J. Alloys Compd. 454(1–2), 374–378 (2008).

    Article  CAS  Google Scholar 

  29. J.M. Calderon-Moreno and M. Yoshimura, Characterization by Raman spectroscopy of solid solutions in the yttria-rich side of the zirconia-yttria system. Solid State Ionics 154, 125–133 (2002).

    Article  Google Scholar 

  30. Z.Y. Qi, X.W. Fu, T.F. Yang, D. Li, P. Fan, H.L. Li, F. Jiang, L.H. Li, Z.Y. Luo, X.J. Zhuang, and A.L. Pan, Highly stable lead-free Cs3Bi2I9 perovskite nanoplates for photodetection applications. Nano Res. 12, 1894–1899 (2019).

    Article  CAS  Google Scholar 

  31. G.Q. Tong, H. Li, D.T. Li, Z.F. Zhu, E. Xu, G.P. Li, L.W. Yu, J. Xu, and Y. Jiang, Dual-phase CsPbBr 3-CsPb2Br5 perovskite thin films via vapor deposition for high-performance rigid and flexible photodetectors. Small 14(7), 1702523 (2018).

    Article  Google Scholar 

  32. B.N. Lakshminarasappa, J.R. Jayaramaiah, and B.M. Nagabhushana, Thermoluminescence of combustion synthesized yttrium oxide. Powder Technol. 217, 7–10 (2012).

    Article  CAS  Google Scholar 

  33. R.H. Krishna, B.M. Nagabhushana, H. Nagabhushana, N.S. Murthy, S.C. Sharma, C. Shivakumara, and R.P.S. Chakradhar, Effect of calcination temperature on structural, photoluminescence, and thermoluminescence properties of Y2O3:Eu3+ nanophosphor. J. Phys. Chem. C 117(4), 1915–1924 (2013).

    Article  CAS  Google Scholar 

  34. C.M. Magdalane, K. Kaviyarasu, J.J. Vijay, B. Siddhardha, B. Jeyaraj, J. Kennedy, and M. Maaza, Evaluation on the het-erostructured CeO2/Y2O3 binary metal oxide nanocomposites for UV/V is light induced photocatalytic degradation of rhodamine-b dye for textile engineering application. J. Alloys Compd. 727, 1324–1337 (2017).

    Article  CAS  Google Scholar 

  35. T. Saravanan, S.G. Raj, N.R.K. Chandar, and R. Jayave, Synthesis, optical and electrochemical properties of Y2O3 nanoparticles prepared by co-precipitation method. J. Nanosci. Nanotechno. 15, 4353–4357 (2015).

    Article  CAS  Google Scholar 

  36. X.Y. Shen and Y.C. Zhai, Preparation and optical properties of Y2O3/SiO2 powder. Rare Met. 30, 33 (2011).

    Article  CAS  Google Scholar 

  37. A.B. Belonoshko, G. Gutierrez, R. Ahuja, and B. Johansson, Molecular dynamics simulation of the structure of yttria Y2O3 phases using pairwise interactions. Phys. Rev. B 64, 184103 (2001).

    Article  Google Scholar 

  38. H.M. Shiri, A. Ehsani, R. Behjatmanesh-Ardakani, and S. Hajghani, Electrosynthesis of Y2O3 nanoparticles and its nano-composite with POAP as high efficient electrode materials in energy storage device: Surface, density of state and electrochemical investigation. Solid State Ionics 338, 87–95 (2019).

    Article  CAS  Google Scholar 

  39. L. Audouard, M.G. Tsoutsouva, N. Horezan, E. Rimpot, J.F. Justin, P. Bertrand, C. Langlade, M. Garcia, and A. Julian-Jankowiak, Chemical and microstructural characterisation of HfO2-Y2O3 ceramics with high amount of Y2O3 (33, 40 and 50 mol.%) manufactured using spark plasma sintering. J. Eur. Ceram. Soc. 43(5), 2093–2103 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the Natural Science Foundation of Shaanxi Province (Grant No. 2023-JC-YB-052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Yang, S., Zeng, X. et al. Facile Synthesis and Characterization of Low-Dimensional Layered Y2O3 Nanosheets by a Rapid Heating Route. J. Electron. Mater. 53, 4613–4621 (2024). https://doi.org/10.1007/s11664-024-11167-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-024-11167-w

Keywords

Navigation