Log in

High-Reaction Kinetics SexS1–x Cathodes for All-Solid-State Lithium–Sulfur Batteries

  • Topical Collection: High-Energy Battery Materials
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

All-solid-state lithium–sulfur batteries are considered one of the most promising candidates for energy storage devices due to their high energy density and safety. However, the poor electron transport of sulfur-based cathodes significantly reduces their reaction kinetics, resulting in low utilization efficiency and subpar rate performance. Herein, leveraging the similar chemical properties of sulfur and selenium, we uniformly deposit SexS1−x (x = 0–0.3) solid solutions with different selenium content on the surface of active carbon via a facile melt-diffusion method to achieve SexS1−x@AC (x = 0–0.3) composite materials. The introduction of selenium effectively enhances the lithium-ion diffusion coefficient of the SexS1−x@AC (x = 0–0.3) cathodes, and improves the stability of the cathode/solid electrolyte interface. With the increase in selenium content, the reaction kinetics of the SexS1−x@AC (x = 0–0.3) cathodes are altered. Specifically, the average lithium-ion diffusion coefficients for the S@AC and Se0.2S0.8@AC cathodes are 6.11 × 10−14 and 1.65 × 10−13 cm2 s−1, respectively, showing a twofold increase. Concurrently, the Se0.2S0.8@AC cathode exhibits higher discharge capacity (698.8 mA h g−1) than that of the S@AC cathode (501.3 mA h g−1) at 1 A g−1. Surprisingly, even when the mass loading increases to 8.85 mg cm−2, the Se0.2S0.8@AC cathode still shows superior cycling stability, which is attributed to the fast ionic/electronic transport pathways within the cathode. Moreover, the Se0.2S0.8@AC cathode maintains good physical contact at the cathode/SE interface after cycling.

Graphical Abstract

In all-solid-state lithium–sulfur batteries, the introduction of selenium in the sulfur cathode enhances reaction kinetics (1.65 × 10−13 cm2 s−1), provides additional reactive sites, and significantly improves the electrochemical performance of Se0.2S0.8@AC even with high mass loading (8.85 mg cm−2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.S. Alzahrani, M. Otaki, D. Wang, Y. Gao, T.S. Arthur, S. Liu, and D. Wang, Confining sulfur in porous carbon by vapor deposition to achieve high-performance cathode for all-solid-state lithium-sulfur batteries. ACS Energy Lett. 6, 413 (2021).

    Article  CAS  Google Scholar 

  2. L. Huang, J. Li, B. Liu, Y. Li, S. Shen, S. Deng, C. Lu, W. Zhang, Y. **a, and G. Pan, Electrode design for lithium-sulfur batteries: problems and solutions. Adv. Func. Mater. 30, 1910375 (2020).

    Article  CAS  Google Scholar 

  3. C. Liu, F. Kong, J. Liu, R. Li, H. Zhang, L. Li, Z. Wang, W. Wan, J. Wei, and C. Dai, Flexible pore structure modulation enables durable sulfur carrier for advanced lithium-sulfur batteries. New J. Chem. 45, 9221 (2021).

    Article  CAS  Google Scholar 

  4. H. Zhong, Y. Su, Y. Wu, J. Gu, R. Ma, Y. Luo, H. Lin, M. Tao, J. Chen, and Z. Liang, Long-life and high-loading all-solid-state li–s batteries enabled by acetylene black with dispersed Co-N4 as single atom catalyst. Adv. Energy Mater. 29, 2300767 (2023).

    Article  Google Scholar 

  5. Q. Pang, X. Liang, C.Y. Kwok, and L.F. Nazar, Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016).

    Article  CAS  Google Scholar 

  6. W. Zhang, Y. Zhang, L. Peng, S. Li, X. Wang, S. Cheng, and J. ** and surface coating. Nano Energy 76, 105083 (2020).

    Article  CAS  Google Scholar 

  7. G. Zhou, J. Sun, Y. **, W. Chen, C. Zu, R. Zhang, Y. Qiu, J. Zhao, D. Zhuo, and Y. Liu, Sulfiphilic nickel phosphosulfide enabled Li(2)S impregnation in 3d graphene cages for Li–S batteries. Adv. Mater. 29, 1603366 (2017).

    Article  Google Scholar 

  8. X. Wang, Y. Qian, L. Wang, H. Yang, H. Li, Y. Zhao, and T. Liu, Sulfurized polyacrylonitrile cathodes with high compatibility in both ether and carbonate electrolytes for ultrastable lithium-sulfur batteries. Adv. Func. Mater. 29, 1902929 (2019).

    Article  Google Scholar 

  9. X. Yao, N. Huang, F. Han, Q. Zhang, H. Wan, J.P. Mwizerwa, C. Wang, and X. Xu, High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes. Adv. Energy Mater. 7, 1602923 (2017).

    Article  Google Scholar 

  10. F. Han, J. Yue, X. Fan, T. Gao, C. Luo, Z. Ma, L. Suo, and C. Wang, High-performance all-solid-state lithium-sulfur battery enabled by a mixed-conductive Li2S nanocomposite. Nano Lett. 16, 4521 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. D.H.S. Tan, E.A. Wu, H. Nguyen, Z. Chen, M.A.T. Marple, J.-M. Doux, X. Wang, H. Yang, A. Banerjee, and Y.S. Meng, Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte. ACS Energy Lett. 4, 2418 (2019).

    Article  CAS  Google Scholar 

  12. S. Wang, X. Zhang, S. Liu, C. **n, C. Xue, F. Richter, L. Li, L. Fan, Y. Lin, and Y. Shen, High-conductivity free-standing Li6PS5Cl/Poly(Vinylidene Difluoride) composite solid electrolyte membranes for lithium-ion batteries. J. Materiomics 6, 70 (2020).

    Article  Google Scholar 

  13. L. Huang, T. Guan, H. Su, Y. Zhong, F. Cao, Y. Zhang, X. **a, X. Wang, N. Bao, and J. Tu, Synergistic interfacial bonding in reduced graphene oxide fiber cathodes containing Polypyrrole@Sulfur nanospheres for flexible energy storage. Angew. Chem. Int. Ed. 61, e202212151 (2022).

    Article  CAS  Google Scholar 

  14. C. Li, C. Zheng, F. Cao, Y. Zhang, and X. **a, The development trend of graphene derivatives. J. Electron. Mater. 51, 4107 (2022).

    Article  CAS  Google Scholar 

  15. J. Zhang, C. Zheng, L. Li, Y. **a, H. Huang, Y. Gan, C. Liang, X. He, X. Tao, and W. Zhang, Unraveling the intra and intercycle interfacial evolution of Li6PS5Cl-based all-solid-state lithium batteries. Adv. Energy Mater. 10, 1903311 (2019).

    Article  Google Scholar 

  16. J. Wu, T. Ye, Y. Wang, P. Yang, Q. Wang, W. Kuang, X. Chen, G. Duan, L. Yu, and Z. **, Understanding the catalytic kinetics of polysulfide redox reactions on transition metal compounds in Li–S batteries. ACS Nano 16, 15734 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. X. Ji, K.T. Lee, and L.F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. P. Liu, Z. Qiu, F. Cao, Y. Zhang, X. He, S. Shen, X. Liang, M. Chen, C. Wang, and W. Wan, Liquid-source plasma technology for construction of dual bromine-fluorine-enriched interphases on lithium metal anodes with enhanced performance. J. Mater. Sci. Technol. 177, 68 (2024).

    Article  Google Scholar 

  19. S. Shen, Y. Chen, J. Zhou, H. Zhang, X. **a, Y. Yang, Y. Zhang, A. Noori, M.F. Mousavi, and M. Chen, Microbe-mediated biosynthesis of multidimensional carbon-based materials for energy storage applications. Adv. Energy Mater. 13, 2204259 (2023).

    Article  CAS  Google Scholar 

  20. S. Liang, C. Liang, Y. **a, H. Xu, H. Huang, X. Tao, Y. Gan, and W. Zhang, Facile synthesis of porous Li2S@C composites as cathode materials for lithium-sulfur batteries. J. Power. Sour. 306, 200 (2016).

    Article  CAS  Google Scholar 

  21. B. Chen, S. Deng, M. Jiang, M. Wu, J. Wu, and X. Yao, Intimate triple phase interfaces confined in two-dimensional ordered mesoporous carbon towards high-performance all-solid-state lithium-sulfur batteries. Chem. Eng. J. 448, 137712 (2022).

    Article  CAS  Google Scholar 

  22. C. Yu, S. Ganapathy, N.J.J.D. Klerk, I. Roslon, E.R.H.V. Eck, A.P.M. Kentgens, and M. Wagemaker, Unravelling Li-ion transport from picoseconds to seconds: bulk versus interfaces in an argyrodite Li6PS5Cl−Li2S all-solid-state Li–ion battery. J. Am. Chem. Soc. 138, 11192 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Q.-T. Xu, H.-G. Xue, and S.-P. Guo, Status and prospects of SexSy cathodes for lithium/sodium storage. Inorg. Chem. Front. 6, 1326 (2019).

    Article  CAS  Google Scholar 

  24. S. Zhang, D. Yang, H. Tan, Y. Feng, X. Rui, and Y. Yu, Advances in K-Q (Q = S, Se and Se S ) batteries. Mater. Today 39, 9–22 (2020).

    Article  Google Scholar 

  25. X. Li, J. Liang, J.T. Kim, J. Fu, H. Duan, N. Chen, R. Li, S. Zhao, J. Wang, and H. Huang, Highly stable halide-electrolyte-based all-solid-state Li–Se batteries. Adv. Mater. 34, 2200856–2200864 (2022).

    Article  CAS  Google Scholar 

  26. C. Lu, W. Zhang, R. Fang, Z. **ao, H. Huang, Y. Gan, J. Zhang, X. He, C. Liang, and D. Zhu, Facile and efficient synthesis of Li2Se particles towards high-areal capacity Li2Se cathode for advanced Li–Se battery. Sustain. Mater. Technol. 29, e00288 (2021).

    CAS  Google Scholar 

  27. B. Guo, Z. Wang, J. Chen, Y. Su, H. Li, H. Ye, X. Zhang, J. Yan, Z. Rong, and J. Sun, Cryo-Em revealing the origin of excessive capacity of the Se cathode in sulfide-based all-solid-state Li–Se batteries. ACS Nano 16, 17414 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. C. Lu, R. Fang, K. Wang, Z. **ao, G.G. Kumar, Y. Gan, X. He, H. Huang, W. Zhang, and Y. **a, Supercritical CO2 synthesis of freestanding Se1-xSx foamy cathodes for high-performance Li–Se1-xSx battery. Front. Chem. 9, 738977 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Z. Wu, W. Zhang, Y. **a, H. Huang, Y. Gan, X. He, X. **a, and J. Zhang, A comprehensive cognition for the capacity fading mechanism of FeS2 in argyrodite-based all-solid-state lithium battery. EcoMat 5, e12327 (2023).

    Article  CAS  Google Scholar 

  30. X. Li, J. Liang, K. Zhang, Z. Hou, W. Zhang, Y. Zhu, and Y. Qian, Amorphous S-rich S1−xSex/C (x ≤ 0.1) composites promise better lithium-sulfur batteries in a carbonate-based electrolyte. Energy Environ. Sci. 8, 3181 (2015).

    Article  CAS  Google Scholar 

  31. F. Sun, B. Zhang, H. Tang, Z. Yue, X. Li, C. Yin, and L. Zhou, Heteroatomic TexS1−x molecule/C nanocomposites as stable cathode materials in carbonate-based electrolytes for lithium-chalcogen batteries. J. Mater. Chem. A 6, 10104–10110 (2018).

    Article  CAS  Google Scholar 

  32. Y. Zhang, O.K. Orhan, L. Tao, W. Lu, M. Ponga, D.J. Freschi, and J. Liu, A high-performance tellurium-sulfur cathode in carbonate-based electrolytes. Nano Energy 107, 108141 (2023).

    Article  CAS  Google Scholar 

  33. X. Li, J. Liang, J. Luo, C. Wang, X. Li, Q. Sun, R. Li, L. Zhang, R. Yang, and S. Lu, High-performance Li–SeSx all-solid-state lithium batteries. Adv. Mater. 31, 1808100 (2019).

    Article  Google Scholar 

  34. H. Du, S. Feng, W. Luo, L. Zhou, and L. Mai, Advanced Li–Se S battery system: electrodes and electrolytes. J. Mater. Sci. Technol. 55, 1 (2020).

    Article  Google Scholar 

  35. J. Hu, Y. Ren, and L. Zhang, Dual-confined Ses2 cathode based on polyaniline-assisted double-layered micro/mesoporous carbon spheres for advanced Li–SeS2 battery. J. Power. Sources 455, 227955 (2020).

    Article  CAS  Google Scholar 

  36. J. Hu, B. Wang, and L. Zhang, Designing dual-confined nanoreactor with built-in small-sized platinum nanoparticles for advanced Li–SeS2 batteries. J. Alloy. Compd. 886, 161246 (2021).

    Article  CAS  Google Scholar 

  37. J. Hu, C. Zhang, and L. Zhang, Double-layered hollow carbon spheres embedded in 3d conductive network as an efficient Se0.4S0.6 host for advanced lithium batteries. J. Alloys Comp. 806, 146 (2019).

    Article  CAS  Google Scholar 

  38. A. Abouimrane, D. Dambournet, K.W. Chapman, P.J. Chupas, W. Weng, and K. Amine, A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode. J. Am. Chem. Soc. 134, 4505 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. M. Jiang, G. Liu, Q. Zhang, D. Zhou, and X. Yao, Ultrasmall Li(2)S-carbon nanotube nanocomposites for high-rate all-solid-state lithium-sulfur batteries. ACS Appl. Mater. Interfaces 13, 18666 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. G. Fukunishi, M. Tabuchi, A. Ikezawa, T. Okajima, F. Kitamura, K. Suzuki, M. Hirayama, R. Kanno, and H. Arai, Ac Impedance analysis of Ncm523 composite electrodes in all-solid-state three electrode cells and their degradation behavior. J. Power. Sources 564, 232864 (2023).

    Article  CAS  Google Scholar 

  41. Z. Yang, D. Jia, Q. Zhao, D. Song, Y. Zhang, J. Gao, X. Sun, T. Ohsaka, F. Matsumoto, and Q. Shen, Multichalcogen-integrated cathodes for novel lithium-chalcogenide batteries in ether and ester electrolytes. ACS Appl. Mater. Interfaces 14, 32112 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. T.H. Hong, W. Min, G. Choi, J.D. Kim, J.T. Lee, and D. Kim, Unified interplay of chemical bond and solid-state kinetics in lithium-sulfur batteries. Adv. Energy Mater. 29, 2300636 (2023).

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial supports from National Natural Science Foundation of China (22279116 and U20A20253), Natural Science Foundation of Zhejiang Province (LD22E020006 and LQ24E020012), Science and Technology Development of Zhejiang Province (2023C01231 and 2024C01095), the Baima Lake Laboratory Joint Funds of the Zhejiang Provincial Natural Science Foundation (LBMHD24E020001), and China Postdoctoral Science Foundation (2020M671785 and 2020T130597).

Author information

Authors and Affiliations

Authors

Contributions

RW: Investigation, Data curation, Writing—Original draft. RF: Conceptualization, Funding acquisition, Writing—Original draft. CL: Methodology, Investigation, Data curation. YG: Formal analysis, Visualization. XH: Methodology, Data curation. JX: Investigation, Formal analysis. ZJ: Investigation, Formal analysis. WZ: Investigation, Funding acquisition. YX: Funding acquisition, Writing—Review and editing.

Corresponding authors

Correspondence to Ruyi Fang or Yang **a.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 999 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, R., Fang, R., Lu, C. et al. High-Reaction Kinetics SexS1–x Cathodes for All-Solid-State Lithium–Sulfur Batteries. J. Electron. Mater. 53, 2833–2841 (2024). https://doi.org/10.1007/s11664-024-11071-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-024-11071-3

Keywords

Navigation