Log in

Highly Flexible, Selective and Sensitive Ammonia Sensor Based on MXene/Cellulose Nanofibers

  • 28th International Conference on Nuclear Tracks and Radiation Measurements
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Flexible electronics have become imperative in an emerging era of the Internet of Things (IoT), as they offer promising alternatives to rigid and complex circuitry for the development of wearable devices. As a result, the research field of flexible gas sensors is increasingly being investigated, including different potential materials, with the aim of high selectivity and sensitivity. In this study, a flexible ammonia (NH3) sensor unit was fabricated using cellulose nanofibers (C-NFs) as a flexible supporting framework and sensing material coating of Ti3C2Tx MXene. The fabricated sensor displayed higher selectivity to NH3 relative to other interferents in the ppm concentration range. The results revealed that the MXene/C-NFs-based sensor exhibited a response of 2.4% towards 5 ppm NH3 with faster response and recovery times of 42 s and 69 s, respectively, which were improved relative to a pristine MXene-based sensor with sensing response of 1.42% and response/recovery time of 67 s/104 s. This enhanced sensing performance was ascribed to the large specific surface area and efficient charge transport pathways provided by the one-dimensional structure of C-NFs, which facilitated the surface adsorption/desorption of NH3 molecules. In addition, the fabricated sensor demonstrated excellent flexibility features and reproducible sensing properties at different bending angles and bending cycles, with low sensing response attenuation of 5.2% under a maximum bending angle of 120°. Overall, this work illustrates the feasibility of employing a nanofiber matrix as a flexible sensing framework along with a porous absorption/desorption surface for next-generation wearable gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z. Cui, C. Gao, Z. Fan, J. Wang, Z. Cheng, Z. **e, Y. Liu, and Y. Wang, Breathable, durable and bark-shaped MXene/textiles for high-performance wearable pressure sensors, EMI shielding and heat physiotherapy. J. Electron. Mater. 50, 2101 (2021).

    Article  CAS  Google Scholar 

  2. M. Cao, F. Wang, L. Wang, W. Wu, W. Lv, and J. Zhu, Room temperature oxidation of Ti3C2 MXene for supercapacitor electrodes. J. Electrochem. Soc. 164, A3933 (2017).

    Article  CAS  Google Scholar 

  3. A. Mirzaei, M. Lee, H. Safaeian, T.U. Kim, J.Y. Kim, and S. Kim, Room temperature chemiresistive gas sensors based on 2D MXenes. Sensors 23, 8829 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Y. Seekaew, S. Kamlue, and C. Wongchoosuk, Room-temperature ammonia gas sensor based on Ti3C2Tx MXene/graphene oxide/CuO/ZnO nanocomposite. ACS Appl. Nano Mater. 6, 9008 (2023).

    Article  CAS  Google Scholar 

  5. M.S. Nam, J.Y. Kim, A. Mirzaei, M.H. Lee, H.W. Kim, and S.S. Kim, Au- and Pt-decorated Ti3C2Tx MXenes for preparing self-heated and flexible NH3 gas sensors. Sens. Act. B Chem. 403, 135112 (2023).

    Article  Google Scholar 

  6. R. Bhardwaj and A. Hazra, MXene-based gas sensors. J. Mater. Chem. C Mater. 9, 15735 (2021).

    Article  CAS  Google Scholar 

  7. M. Wu, M. He, Q. Hu, Q. Wu, G. Sun, L. **e, Z. Zhang, Z. Zhu, and A. Zhou, Ti3C2 MXene-based sensors with high selectivity for NH3 detection at room temperature. ACS Sens. 4, 2763 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. A. Raza, R. Abid, I. Murtaza, and T. Fan, Room temperature NH3 gas sensor based on PMMA/RGO/ZnO nanocomposite films fabricated by in-situ solution polymerization. Ceram. Int. 49, 27050 (2023).

    Article  CAS  Google Scholar 

  9. A. Kumar, R. Kashyap, R. Kumar, R. Singh, B. Prasad, M. Kumar, and D. Kumar, Experimental and numerical modelling of a nanostructured nickel ferrite-based ammonia gas sensor. J. Electron. Mater. 51, 4040 (2022).

    Article  CAS  Google Scholar 

  10. S. Sardana, H. Kaur, B. Arora, D.K. Aswal, and A. Mahajan, Self-powered monitoring of ammonia using an MXene/TiO2/cellulose nanofiber heterojunction-based sensor driven by an electrospun triboelectric nanogenerator. ACS Sens. 7, 312 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. H.Y. Li, C.-S. Lee, D.H. Kim, and J.-H. Lee, Flexible room-temperature NH3 sensor for ultrasensitive, selective, and humidity-independent gas detection. ACS Appl. Mater. Interfaces 10, 27858 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. S. Sardana and A. Mahajan, Edge-site-enriched Ti3C2Tx MXene/MoS2 nanosheet heterostructures for self-powered breath and environmental monitoring. ACS Appl. Nano Mater. 6, 469 (2022).

    Article  Google Scholar 

  13. S.P. Sreenilayam, I. Ul Ahad, V. Nicolosi, and D. Brabazon, MXene materials based printed flexible devices for healthcare, biomedical and energy storage applications. Mater. Today 43, 99 (2021).

    Article  CAS  Google Scholar 

  14. R.B. John, V. Karthikeyan, N. Septiani, A. Hardiansyah, A.R. Kumar, B. Yuliarto, and A. Hermawan, Gas-sensing mechanisms and performances of MXenes and MXene-based heterostructures. Sensors 23, 8674 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Z. Yang, S. Lv, Y. Zhang, J. Wang, L. Jiang, X. Jia, C. Wang, X. Yan, P. Sun, Y. Duan, F. Liu, and G. Lu, Self-assembly 3D porous crumpled MXene spheres as efficient gas and pressure sensing material for transient all-MXene sensors. Nanomicro Lett. 14, 56 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. W. Quan, J. Shi, H. Luo, C. Fan, W. Lv, X. Chen, M. Zeng, N. Hu, Y. Su, H. Wei, and Z. Yang, Fully flexible MXene-based gas sensor on paper for highly sensitive room-temperature nitrogen dioxide detection. ACS Sens. 8, 103 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. W. Yang, Y. Qin, Z. Wang, T. Yu, and Z. Ge, Recent Advances in the development of flexible sensors: mechanisms, materials, performance optimization, and applications. J. Electron. Mater. 51, 6735 (2022).

    Article  CAS  Google Scholar 

  18. V. Chaudhary, A. Gautam, Y. Mishra, and A. Kaushik, Emerging MXene–polymer hybrid nanocomposites for high-performance ammonia sensing and monitoring. Nanomaterials 11, 2496 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Y. Cai, Y. Wang, X. Wen, J. **ong, H. Song, Z. Li, D. Zu, Y. Shen, and C. Li, Ti3C2Tx MXene/urchin-like PANI hollow nanosphere composite for high performance flexible ammonia gas sensor. Anal. Chim. Acta 1225, 340256 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Z. Zhou, Q. Song, B. Huang, S. Feng, and C. Lu, Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance. ACS Nano 15, 12405 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. W.T. Cao, F.F. Chen, Y.J. Zhu, Y.G. Zhang, Y.Y. Jiang, M.G. Ma, and F. Chen, Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12, 4583 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, and Y. Gogotsi, Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633 (2017).

    Article  CAS  Google Scholar 

  23. Z. Pang, Z. Yang, Y. Chen, J. Zhang, Q. Wang, F. Huang, and Q. Wei, A room temperature ammonia gas sensor based on cellulose/TiO2/PANI composite nanofibers. Colloids Surf A Physicochem Eng Asp 494, 248 (2016).

    Article  CAS  Google Scholar 

  24. A.S. Khune, V. Padghan, R. Bongane, V.N. Narwade, B.N. Dole, N.N. Ingle, M.L. Tsai, T. Hianik, and M.D. Shirsat, Highly selective chemiresistive SO2 sensor based on a reduced graphene oxide/porphyrin (rGO/TAPP) composite. J. Electron. Mater. 52, 8108 (2023).

    Article  CAS  Google Scholar 

  25. G.V.N. Rathna, J.P. Jog, and A.B. Gaikwad, Development of non-woven nanofibers of egg albumen-poly (vinyl alcohol) blends: influence of solution properties on morphology of nanofibers. Polym. J. 43, 654 (2011).

    Article  CAS  Google Scholar 

  26. R.W.J. Scott, S.M. Yang, G. Chabanis, N. Coombs, D.E. Williams, and G.A. Ozin, Tin dioxide opals and inverted opals: near-ideal microstructures for gas sensors. Adv. Mater. 13, 1468 (2001).

    Article  CAS  Google Scholar 

  27. X. Tian, L. Yao, X. Cui, R. Zhao, T. Chen, X. **ao, and Y. Wang, A two-dimensional Ti3C2TX MXene@TiO2/MoS2 heterostructure with excellent selectivity for the room temperature detection of ammonia. J. Mater. Chem. A Mater. 10, 5505 (2022).

    Article  CAS  Google Scholar 

  28. K. Weng, J. Peng, Z. Shi, A. Arramel, and N. Li, Highly NH3 sensitive and selective Ti3C2O2-based gas sensors: a density functional theory-NEGF study. ACS Omega 8, 4261 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. M. Liu, J. Ji, P. Song, J. Wang, and Q. Wang, Sensing performance of α-Fe2O3/Ti3C2Tx MXene nanocomposites to NH3 at room temperature. J. Alloys Compd. 898, 162812 (2022).

    Article  CAS  Google Scholar 

  30. C.E. Shuck, M. Han, K. Maleski, K. Hantanasirisakul, S.J. Kim, J. Choi, W.E.B. Reil, and Y. Gogotsi, Effect of Ti3AlC2 MAX phase on structure and properties of resultant Ti3C2Tx MXene. ACS Appl. Nano Mater. 2, 3368 (2019).

    Article  CAS  Google Scholar 

  31. S.J. Kim, H.-J. Koh, C.E. Ren, O. Kwon, K. Maleski, S.Y. Cho, B. Anasori, C.-K. Kim, Y.-K. Choi, J. Kim, Y. Gogotsi, and H.-T. Jung, Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12, 986 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. W. Yuan, K. Yang, H. Peng, F. Li, and F. Yin, A flexible VOCs sensor based on a 3D Mxene framework with a high sensing performance. J. Mater. Chem. A Mater. 6, 18116 (2018).

    Article  CAS  Google Scholar 

  33. L. Zhao, Y. Zheng, K. Wang, C. Lv, W. Wei, L. Wang, and W. Han, Highly stable cross-linked cationic polyacrylamide/Ti3C2Tx MXene nanocomposites for flexible ammonia-recognition devices. Adv. Mater. Technol. 5, 2000248 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (S.S.) is grateful to DST INSPIRE, New Delhi, for providing a fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aman Mahajan.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sardana, S., Mahajan, A. Highly Flexible, Selective and Sensitive Ammonia Sensor Based on MXene/Cellulose Nanofibers. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-11033-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-11033-9

Keywords

Navigation