Log in

Effects of Oxygen Content on Low-Temperature Bonding Using Organic-Free Silver Nanostructured Film with Different Types of Substrate Metallization

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

As the next generation of die attachment technology, sintering bonding using silver nanoparticles is attracting great interest for application in power electronics packaging. For organic-free silver nano-sintering materials, increasing the oxygen content facilitates the sintering process but also causes oxidation of the substrate and other components. In this work, organic-free silver nanostructured film was utilized to bond the SiC chips and the substrate with three types of metallization: (1) electroless nickel immersion gold finishing substrate (ENIG), (2) Ag-coated substrate, and (3) bare Cu substrate. The bonding process was conducted at low temperature (150–300°C), and the effects of oxygen on the microstructure, bonding quality of the interfaces and fracture morphology were studied. Oxygen significantly facilitated the sintering process of the Ag nanoparticles in the film, which promoted the densification of the bondline, even at low concentrations (0.05%). In addition, the facilitating effects of oxygen were detected at content of 0.05% during the sintering between Ag nanoparticles and the three types of metallized substrate. However, at higher oxygen content (≥5%), the sintering behavior varied among the different substrate metals. The Ag-coated substrate surface roughened in situ at high oxygen content and showed positive effects on the bonding strength, while the ENIG substrate surface was inert to oxygen. The bare Cu substrate surface showed complex oxide states at different oxygen concentrations. The Cu2O phase formed at oxygen content of ≤ 5%, which enhanced the bonding strength, while CuO tended to appear at oxygen content of ≥ 20%, which reduced the bonding strength. These results reveal that relatively low oxygen content (0.05%) can effectively improve bonding strength while avoiding oxidation of the Cu substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. F. Yu, J. Cui, Z. Zhou, K. Fang, R.-W. Johnson, and M.-C. Hamilton, Reliability of Ag sintering for power semiconductor die attach in high-temperature applications. IEEE Trans. Power Electron. 32, 7083 (2016)

    Article  Google Scholar 

  2. T. Kimoto, H. Niwa, T. Okuda, E. Saito, Y. Zhao, S. Asada, and J. Suda, Carrier lifetime and breakdown phenomena in SiC power device material. J. Phys. D Appl. Phys. 51, 363001 (2018)

    Article  Google Scholar 

  3. W.-S. Hong, M.-S. Kim, C. Oh, Y. Joo, Y. Kim, and K.-K. Hong, Pressureless silver sintering of silicon-carbide power modules for electric vehicles. JOM 72, 889 (2020)

    Article  CAS  Google Scholar 

  4. L. Ceccarelli, P.-D. Reigosa, F. Iannuzzo, and F. Blaabjerg, A survey of SiC power MOSFETs short-circuit robustness and failure mode analysis. Microelectron. Reliab. 76, 272 (2017)

    Article  Google Scholar 

  5. H. Zhang, Z. Zhao, G. Zou, W. Wang, L. Liu, G. Zhang, and Y. Zhou, Failure analysis and reliability evaluation of silver-sintered die attachment for high-temperature applications. Microelectron. Reliab. 94, 46 (2019)

    Article  CAS  Google Scholar 

  6. S. Paknejad, G. Dumas, G. West, G. Lewis, and S. Mannan, Microstructure evolution during 300 C storage of sintered Ag nanoparticles on Ag and Au substrates. J. Alloy. Compd. 617, 994 (2014)

    Article  CAS  Google Scholar 

  7. V.-R. Manikam and K.-Y. Cheong, Die attach materials for high temperature applications: a review. IEEE Trans. Compon. Packag. Manuf. Technol. 1, 457 (2011)

    Article  CAS  Google Scholar 

  8. G. Zou, J. Yan, F. Mu, A. Wu, J. Ren, A. Hu, and Y. Zhou, Low temperature bonding of Cu metal through sintering of Ag nanoparticles for high temperature electronic application. Open Surf. Sci. J. 3, 70 (2011)

    Article  CAS  Google Scholar 

  9. W. Schmitt, L.-M. Chew, and R. Miller, Pressure-less sintering on large dies using infrared radiation and optimized silver sinter paste, In 2018 IEEE 68th Electronic Components and Technology Conference (2018), pp. 539–544

  10. U. Waltrich, C.-F. Bayer, S. Zoetl, A. Tokarski, S. Zischler, A. Schletz, and M. Maerz, Highly reliable power modules by pressureless sintering, In CIPS 2018; 10th International Conference on Integrated Power Electronics Systems (2018), pp. 1–5

  11. K. Khtatba, S.-A. Paknejad, T.-A. Zoubi, H. Qutaish, N. Sano, and S.-H. Mannan, Arresting high-temperature microstructural evolution inside sintered silver. J. Mater. Sci. Mater. Electron. 30, 463 (2019)

    Article  CAS  Google Scholar 

  12. Z. Zhang, C. Chen, Y. Yang, H. Zhang, D. Kim, T. Sugahara, S. Nagao, and K. Suganuma, Low-temperature and pressureless sinter joining of Cu with micron/submicron Ag particle paste in air. J. Alloy. Compd. 780, 435 (2019)

    Article  CAS  Google Scholar 

  13. W. Wang, G. Zou, N. Chen, Q. Jia, B. Feng, H. Zhang, Z. Deng, and L. Liu, The mechanisms of oxygen accelerated low temperature bonding by Ag nanoparticles. Part. Part. Syst. Charact. 40, 2200195 (2023)

    Article  CAS  Google Scholar 

  14. S.-T. Chua, K.-S. Siow, and A. Jalar, Effect of sintering atmosphere on the shear properties of pressureless sintered silver joint, In 36th International Electronics Manufacturing Technology Conference (2015), pp. 1–5

  15. Q. Xu, Y. Mei, X. Li, and G.-Q. Lu, Correlation between interfacial microstructure and bonding strength of sintered nanosilver on ENIG and electroplated Ni/Au direct-bond-copper (DBC) substrates. J. Alloy. Compd. 675, 317 (2016)

    Article  CAS  Google Scholar 

  16. M.-S. Kim and H. Nishikawa, Influence of ENIG defects on shear strength of pressureless Ag nanoparticle sintered joint under isothermal aging. Microelectron. Reliab. 76, 420 (2017)

    Article  Google Scholar 

  17. S.-K. Lin, S. Nagao, E. Yokoi, C. Oh, and K. Suganuma, Nano-volcanic eruption of silver. Sci. Rep. 6, 34769 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. C.-J. Du, X. Li, Y.-H. Mei, and G.-Q. Lu, An explanation of sintered silver bonding formation on bare copper substrate in air. Appl. Surf. Sci. 490, 403 (2019)

    Article  CAS  Google Scholar 

  19. W. Wang, G. Zou, Q. Jia, H. Zhang, B. Feng, Z. Deng, and L. Liu, Mechanical properties and microstructure of low temperature sintered joints using organic-free silver nanostructured film for die attachment of SiC power electronics. Mater. Sci. Eng. A 793, 139894 (2020)

    Article  CAS  Google Scholar 

  20. H. Ren, G. Zou, Q. Jia, Z. Deng, C. Du, W. Wang, and L. Liu, Thermal stress reduction strategy for high-temperature power electronics with Ag sintering. Microelectron. Reliab. 127, 114379 (2021)

    Article  CAS  Google Scholar 

  21. Z. Deng, G. Zou, Q. Jia, B. Feng, H. Zhang, H. Ren, and L. Liu, Efect of Ag sintered bondline thickness on high-temperature reliability of SiC power devices. IEEE Trans. Compon. Packag. Manuf. Technol. 11, 1889 (2021)

    Article  CAS  Google Scholar 

  22. Y.-Z. Hu, R. Sharangpani, and S.-P. Tay, In situ rapid thermal oxidation and reduction of copper thin films and their applications in ultralarge scale integration. J. Electrochem. Soc. 148, G669 (2001)

    Article  CAS  Google Scholar 

  23. X.-Y. Gao, S.-Y. Wang, J. Li, Y.-X. Zheng, R.-J. Zhang, P. Zhou, Y.-M. Yang, and L.-Y. Chen, Study of structure and optical properties of silver oxide films by ellipsometry, XRD and XPS methods. Thin Solid Films 455, 438 (2004)

    Article  Google Scholar 

  24. T. Rocha, A. Oestereich, D.-V. Demidov, M. Hävecker, S. Zafeiratos, G. Weinberg, V.-I. Bukhtiyarov, A. Knop-Gericke, and R. Schlögl, The silver-oxygen system in catalysis: new insights by near ambient pressure x-ray photoelectron spectroscopy. Phys. Chem. Chem. Phys. 14, 4554 (2012)

    Article  CAS  PubMed  Google Scholar 

  25. G.-I. Waterhouse, J.-B. Metson, and G.-A. Bowmaker, Synthesis, vibrational spectra and thermal stability of Ag3O4 and related Ag7O8X salts (X= NO3, ClO4, HSO4). Polyhedron 26, 3310 (2007)

    Article  CAS  Google Scholar 

  26. W. Shen, L. Feng, and Z. Kong, Preparation of ultrafine AgO powder and silver valence change. Rare Met. Mater. Eng. 40, 1961 (2011)

    CAS  Google Scholar 

  27. G. Hoflund, Z. Hazos, and G. Salaita, Surface characterization study of Ag, AgO, and Ag2O using x-ray photoelectron spectroscopy and electron energy-loss spectroscopy. Phys. Rev. B 62, 11126 (2000)

    Article  CAS  Google Scholar 

  28. G. Hoflund and B. Gar, Ag2O XPS spectra. Surf. Sci. Spectra 3, 157 (1994)

    Article  CAS  Google Scholar 

  29. G. Hoflund and B. Gar, AgO XPS spectra. Surf. Sci. Spectra 3, 163 (1994)

    Article  CAS  Google Scholar 

  30. B. Feng, D. Shen, W. Wang, Z. Deng, L. Lin, H. Ren, A. Wu, G. Zou, L. Liu, and Y.N. Zhou, Cooperative bilayer of lattice-disordered nanoparticles as room-temperature sinterable nano-architecture for device integrations. ACS Appl. Mater. Interfaces 11, 16972 (2019)

    Article  CAS  PubMed  Google Scholar 

  31. J. Liu, H. Chen, H. Ji, and M. Li, Highly conductive Cu-Cu joint formation by low-temperature sintering of formic acid-treated Cu nanoparticles. ACS Appl. Mater. Interfaces 8, 33289 (2016)

    Article  CAS  PubMed  Google Scholar 

  32. Q. Wu, M. Si, B. Zhang, K. Zhang, H. Li, L. Mi, Y. Jiang, R. Yan, J. Chen, and Y. Fang, Strong dam** of the localized surface plasmon resonance of Ag nanoparticles by Ag2O. Nanotechnology 29, 295702 (2018)

    Article  PubMed  Google Scholar 

  33. L. He, J. Li, X. Wu, F. Mu, Y. Wang, Y. Lu, and T. Suga, Robust Ag-Cu sintering bonding at 160°C via combining Ag2O microparticle paste and Pt-catalyzed formic acid vapor. Metals (Basel, Switz.) 10, 315 (2020)

    Article  CAS  Google Scholar 

  34. Y. Fang, B. Zhang, L. Hong, D. Yao, Z. **e, and Y. Jiang, Improvement of photocatalytic activity of silver nanoparticles by radio frequency oxygen plasma irradiation. Nanotechnology 26, 295204 (2015)

    Article  PubMed  Google Scholar 

  35. A.A. Ogwu, T.H. Darma, and E. Bouquerel, Electrical resistivity of copper oxide thin films prepared by reactive magnetron sputtering. J. Achiev. Mater. Manuf. Eng. 24, 172 (2007)

    Google Scholar 

  36. W. Zhang, S.H. Brongersma, Z. Li, D. Li, O. Richard, and K. Maex, Analysis of the size effect in electroplated fine copper wires and a realistic assessment to model copper resistivity. J. Appl. Phys. 101, 100 (2007)

    Google Scholar 

  37. Y. Gao, W. Li, C. Chen, H. Zhang, J. Jiu, C.-F. Li, S. Nagao, and K. Suganuma, Novel copper particle paste with self-reduction and self-protection characteristics for die attachment of power semiconductor under a nitrogen atmosphere. Mater. Des. 160, 1265 (2018)

    Article  CAS  Google Scholar 

  38. C. Zhu, A. Osherov, and M.-J. Panzer, Surface chemistry of electrodeposited Cu2O films studied by XPS. Electrochim. Acta 111, 771 (2013)

    Article  CAS  Google Scholar 

  39. A. Wong, R.-G. Krishnan, and G. Sarkar, X-ray photoelectron spectroscopy and Auger electron spectroscopy investigation on the oxidation resistance of plasma-treated copper leadframes. J. Vac. Sci. Technol. A 18, 1619 (2000)

    Article  CAS  Google Scholar 

  40. F.-F. Lange and B.-J. Kellett, Thermodynamics of densification: II, grain growth in porous compacts and relation to densification. J. Am. Ceram. Soc. 72, 735 (2010)

    Article  Google Scholar 

  41. C.-H. Sha and C.C. Lee, Low-temperature solid-state silver bonding of silicon chips to alumina substrates. IEEE Trans. Compon. Packag. Manuf. Technol. 1, 1983 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant 52075287, 52275346).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zou, G., Deng, Z. et al. Effects of Oxygen Content on Low-Temperature Bonding Using Organic-Free Silver Nanostructured Film with Different Types of Substrate Metallization. J. Electron. Mater. 53, 3870–3886 (2024). https://doi.org/10.1007/s11664-024-11020-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-024-11020-0

Keywords

Navigation